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Linear momentum must be conserved during the impact, so:
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If an elastic collision is assumed, energy is also conserved:
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The linear impulse between the tip and ball at impact is equal to the change in
momentum of both the stick and ball:
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and the angular impulse is equal to the change in angular momentum of the ball:
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From Equation 1, the final stick speed can be expressed as:
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and from Equations 3 and 4, the spin rate of the ball can be expressed as:
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Substituting Equations 5 and 6 into Equation 2, and solving for the final ball speed gives:





















2

2

5
1

2

R

x

m

m

v
v

s

b

s
b

7( )

Obviously, to achieve maximum ball speed (vb) for a given stick speed (vs), the offset (x) should

be 0 (i.e., center-ball hit).  For a typical mass ratio (1/3, per below), the maximum ball speed is
related to the stick speed (neglecting energy losses) according to:
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So for a center-ball hit, with typical equipment (and neglecting energy losses), the ball moves
50% faster than the stick.  With an extremely heavy stick (ms >> mb), the theoretical limit for

the maximum speed of the ball is twice the speed of the stick. 

Substituting Equation 7 into Equation 6 gives the ball spin rate:

D

N

R
x

m
m

R

xv

s

b

s 





















2

2

2
5

1

5
9( )

For maximum ball spin, for a given cue-stick speed, the derivative of  with respect to x
must be zero, so:
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Solving this equation for x gives the tip offset that results in the maximum ball spin-rate:
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Typical mass values are 6 oz for the ball and 18 oz for the cue stick.  This gives a mass ratio of
1/3, so the predicted offset for maximum spin is: 
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When considering the offset for maximum spin, we need to ensure the ball separates from the cue
stick after impact; otherwise, the tip would continue to push and rub on the cue ball after the initial
impact (if we neglect the effects of squirt and cue stick deflection and vibration for the moment).
The condition for separation between the tip and ball is: 
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Equations 5 and 7 can be used to show that this constraint is equivalent to:
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Comparing this to Equation 11 shows that the offset that produces the maximum spin rate is also
on the verge of preventing cue tip and ball separation.  So it would appear that 0.73R is still the
optimal value for achieving maximum ball spin.

The analysis above has assumed the collision is perfectly elastic (i.e., no energy is lost).  Now,
we'll look at the effects of an inelastic collision between the cue tip and cue ball.  In this case,
the coefficient of restitution (e) is less than one, and energy is lost in the collision.  If 
represents the efficiency of the collision, Equation 2 can be written as:
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This equation can be written (by multiplying by 2/ms) as:

22222

5

2
'  Rmvmvv rbrss  16( )

where mr is the ball-to-cue-stick mass ratio:
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Substituting Equations 5 and 6 into Equation 16 and simplifying results in:
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Equation 18 is a quadratic, and can be solved for the final ball speed:
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For an elastic collision (e = 1), no energy is lost (=1=100%), and Equation 19 reduces to
Equation 7.

To see how the collision efficiency () is related to the coefficient of restitution (e), let's look at
the simple case of a center-ball hit (x=0, =0).  The coefficient of restitution (COR = e) is defined
as the ratio of the speed of separation and the speed of approach between the cue stick and cue
ball: 
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From Equations 1 and 20, it can be shown that final cue stick speed is
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and the final cue ball speed is:
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Substituting Equations 21 and 22 into Equation 16 (with =0), gives:
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Here's a plot of how the efficiency η varies with e and mr, for typical ranges of values:
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The efficiency and COR vary with cue tip type and the mass of the cue stick.  The COR (e) also
might vary with tip offset and shot speed, but I don't have data to quantify this.  From HSV B.42,
typical leather-tip playing-cue CORs are in the 0.73 range.  For a 19 oz cue, that corresponds to
an efficiency of:
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For the remainder of the analysis, I'll use an efficiency of 0.87 (87%), corresponding to an energy
loss of 13%, which is fairly typical and is what Coriolis used in his book.

η 0.87

We will now look at how ball speed (from Equation 19) and spin (from Equation 6, expressed in
units of revolutions per second), vary with tip offset and cue mass for a constant collision
efficiency:
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Therefore, with a typical collision efficiency, the offset that produces the most spin is
close to the miscue limit (0.5).  Note that, for the assumptions above, a lighter cue (with
a larger mass ratio mr), will deliver slightly more spin to the cue ball than a heavier cue for

offsets close to the miscue limit (x/R = 0.5), but this probably isn't enough of a reason to
try to switch to a lighter cue stick.  The only other way to increase the amount of spin,
other than by increasing the tip offset (up to the miscue limit), is to increase the stick
speed.

It is interesting to compare the relative effects of increasing stick speed vs. increasing tip
offset.  Let's look at increasing stick speed by 10% vs. increasing the offset by 10% (for
50% and 100% maximum offset, and at medium speed):

mr
6

19
 typical ball-to-stick mass ratio

x 0.25 R
rps 1.1vs x mr 

rps vs x mr 
1.1

rps vs 1.1x mr 
rps vs x mr 

1.069

x 0.5 R
rps 1.1vs x mr 

rps vs x mr 
1.1

rps vs 1.1x mr 
rps vs x mr 

0.984

So increasing the stick speed has the same effect on the spin rate, regardless of the
amount of offset.  The spin rate increases by the same amount as the speed.  However,
increasing the tip offset has a smaller effect, and this effect decreases at larger offsets.
Therefore, it is safer to keep the cue tip away from the miscue offset limit a little, and just
add more stick speed to get more spin.  This is more efficient than trying to add more
offset close to the limit, provided you can create more stick speed without sacrificing
accuracy too much.



Now let's look at how the cue stick and cue ball speeds after impact vary with tip offset for
different ball-to-cue mass ratios.

From Equation 5, the cue stick speed after impact (vs') is related to the cue ball speed (vb)

according to:
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Therefore, close to the miscue limit (x/R = 0.5) the cue ball is at risk of not separating from the
cue tip cleanly.  Although, in reality, the cue tip deflects away from the cue ball after the hit,
likely giving the cue ball time and distance to clear.



Now let's look at a heavier cue (22 oz):
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Therefore, with a heavier cue, the cue ball will definitely not separate cleanly from the cue tip
for offsets greater than about x/R=0.45, and double hits, pushes, and/or miscues would be
likely.



Now let's look at how cue ball speed varies with stick weight and collision efficiency.

Remember, from Equation 23, collision efficiency depends on both the coefficient of
restitution (COR or e) and the ball-to-stick mass ratio (mr):
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From Equation 19, for a center-ball hit (x=0), the cue ball speed depends on the stick speed

(vs), the ball-to-stick mass ratio (mr), and the COR (e) according to:
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The following plot shows how cue ball speed (as a percentage of stick speed) varies over a
wide range of possible cue weights.  A typical value is used for the COR (0.73), based on
HSV B.42 with a typical playing cue with a medium-hardness leather tip.  This corresponds
to an efficiency of about 89% for a typical-weight cue (19 oz):
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Notice that for a given cue speed, more cue weight gives more cue ball speed, as one would
expect.  Although, the benefit of the added weight diminishes at higher weights.   Also, in
reality, it is more difficult to stroke a heavier cue at the same speed as a lighter cue. 



With a higher-efficiency collision, the results change a little.  From HSV B.42, typical
phenolic-tip break cues have a COR (e) as high as 0.87.  For a 19oz cue, that corresponds to
a collision efficiency of about 94%:
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With a perfectly elastic collision (100% efficient), the theoretical limit for the
ball-speed-to-stick-speed percentage, for a ridiculously-heavy cue is 200%, as predicted
by Equation 7.  This is not realistic to achieve, but one thing is clear: a higher-efficiency
tip results in significantly more cue ball energy.  Here are typical values comparing a
leather-tip playing cue to a phenolic-tip break cue:
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Breaking power is related to the energy delivered to the cue ball, which is related to the
square of the speed, so here is how the tips compare in terms of breaking power:
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1.168

So a high-efficiency phenolic tip provides about a 17% increase in breaking power over
a typical medium-hardness leather tip, which is significant.



For a given cue weight, cue ball speed increases linearly with cue speed, as shown by the
following plot (and as predicted by Equation 7):
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If you could increase in your cue speed by 10%, for a given weight cue, the cue ball speed
would also increase by 10%, and the effective increase in breaking power would be 21%:

1.1 vb 2

vb
2
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If you were able to generate the same cue speed with a range of cue weights, you can also
increase breaking performance by using a heavier cue. Increasing cue weight from 17 to 22
oz (with a fixed cue speed) would increase the cue ball speed by 6.3%, which would
correspond to an effective increase in breaking power of 13%:
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So with a dramatic increase in cue weight (17 oz to 22 oz), the benefit is not as large as one
might expect, even if the heavier cue could be stroked at the same speed as the lighter cue
(which is usually not the case).

So what break cue weight should you use to get the most power with the best tip?
Obviously, and as shown above, a heavier cue will deliver more speed to the cue ball;
however, it is more difficult to generate stick speed with a heavier cue.  The optimal cue
weight, allowing for the best combination of weight and speed will vary with each individual
based on muscle physiology.  For more info, see the cue weight FAQ page here:

 https://billiards.colostate.edu/faq/cue/weight/


