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stroke length to CB: d:=12-in d=0.305m
cue speed at CB impact: V¢ := 15-mph Vg = 6.706m
s

cue mass: mg = 19-0z me = 0.539kg

Kinematic/dynamic relationships:
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technical proof

Classic "coast into the ball" pendulum (p) stroke (assuming a classic 1/4-wave sinusoidal speed

vs. distance curve):
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Typical "accelerate into the ball" (a) stroke (assuming a straight-line speed vs. distance curve):
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Here are alternative (time-based) formulations of stroke kinematics for
coasting-pendulum vs. accelerating strokes:

Classic "coast into the ball" pendulum (p) stroke (assuming a 1/2-wave sinusoidal speed vs. time

curve):
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Evaluating boundary conditions gives:

Integrating gives:
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Therefore, the resulting velocity curve looks like:
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Differentiating the velocity equation gives us acceleration and force:
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Typical "accelerate into the ball" (a) stroke (assuming a 1/4-wave sinusoidal acceleration vs.
time curve):
a4 (t) = a¢-sin I t
aa f 2,

Integrating gives:
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Evaluating boundary conditions gives:
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Differentiating the velocity equation gives us acceleration and force:
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Here's yet another alternative formulation recommended by "Jal" (from the online forums),
who helped me work out some of the details. This time, let's look at a sinusoidal acceleration
profile resulting in the desired speed with the smallest peak force (pf).

The acceleration is assumed to be of the form:
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where F is the peak force.

Integrating twice gives speed and distance as functions of time:
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From these equations, the peak force is related to the final position (d) and speed (v),
after time tg, according to:
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Defining z = Wiy, and solving for w in term of z gives:
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Substituting this back into the speed peak-force equation gives:
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To get the desired final speed (v;) over the stroke length (d) with the minimum peak force,
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giving:
(1- cos(z))z-(l —¢0s(z)) — (z — sin(z))-2-(1 — cos(z)) sin(z) = 0

(1 — cos(2))% = 2-sin(2)-(z — sin(2)) = 0



The solution to this equation is:

z := 90-deg Given
initial guess (1- cos(z))2 — 2:sin(z)-(z - sin(z)) = 0

2.:= Find(z) = 113.145-deg

verifying: (- cos(z))2 — 2-sin(z)-(z - sin(z)) = 0

so, from the equations for w, z, and F above,
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Now comparing the results from all of the models:

p: pendulum (1/4-wave sinusoidal v vs. x)

a: accelerating (straight-line v vs. x)

pa: pendulum - alternative (1/2-wave sinusoidal v vs. t)
aa: accelerating - alternative (1/4-wave sinusoidal a vs. t)
pf: accelerating - alternative (minimum peak force)

Speed vs. distance:




Force vs. distance:
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speed vs. bridge length change:
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speed vs. bridge or stroke length change:
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With typical pendulum (p) strokes, the speed is more constant (i.e., leveled-off) at CB
impact, possibly making it easier to control shot speed, because the speed is less
sensitive to variations in bridge and stroke length. With typical "accelerate into the
ball" (a) strokes, the force increases and levels off during the stroke, and force is
being applied all of the way up to ball impact. With a classic pendulum stroke, it is
natural to coast into the ball with no force at impact. The peak force is typically
lower with an "accelerate into the ball" stroke than with a pendulum stroke (for the
same shot speed) because force is applied over a larger distance. Therefore, for
some people, this type of stroke might seem to require less effort for a given speed,
and higher speeds might be possible. A typical "accelerate into the ball" stroke
usually involves more of a "piston-like" stroke, with shoulder motion and elbow
drop, allowing some people to generate force more easily throughout the stroke.
One disadvantage of a piston stroke is that tip-contact-point accuracy might be more
difficult to control.

For actual stroke examples with video demonstrations and plots, see:
HSV B.40 - stroke speed and acceleration analysis, with Bob Jewett

For plots and analysis of actual accelerometer readings, see:
TP A.9 - Cue accelerometer measurements




