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Abstract: The last two decades have seen a growing interest in research related to billiards.
There have been a number of projects aimed at developing training systems, robots, and com-
puter simulations for billiards. Determination of billiard ball trajectories is important for all of
these systems. The ball’s collision with a cushion is often encountered in billiards and it drasti-
cally changes the ball trajectory, especially when the ball has spin. This work predicts ball bounce
angles and bounce speeds for the ball’s collision with a cushion, under the assumption of insignifi-
cant cushion deformation. Differential equations are derived for the ball dynamics during the
impact and these equations are solved numerically. The numerical solutions together with pre-
vious experimental work by the authors predict that for the ball–cushion collision, the values of
the coefficient of restitution and the sliding coefficient of friction are 0.98 and 0.14, respectively.
A comparison of the numerical and experimental results indicates that the limiting normal velo-
city under which the rigid cushion assumption is valid is 2.5 m/s. A number of plots that show
the rebound characteristics for given ball velocity–spin conditions are also provided. The plots
quantify various phenomena that have hitherto only been described in the billiards literature.

Keywords: impulse with friction, billiards, snooker, pool, ball trajectories, cushion rebound,
coefficient of restitution, impact simulations

1 INTRODUCTION

Snooker and pool are two popular cue sports generally
known as billiards (here onwards the term ‘billiards’ is
used to refer to both snooker and pool). Billiards is
a classic example of dynamic concepts such as spin-
ning, rolling, sliding, and the collisions of spheres.
Billiards was one of the first games to be analysed from
a technical perspective. The 1835 study by the French
scientist Coriolis, entitled Théorie mathématique des
effets du jeu de billard, is a pioneering work on sports
dynamics [1]. Billiards-related research is steadily on
the rise and in recent years a number of robots have
been developed to play pool and snooker [2–5]. There
are also a number of initiatives for creating training
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systems for billiard games [6–8]. The research on com-
puter billiards, which simulates the real-world billiards
environment, also receives the increasing attention of
computer scientists seeking to create artificial intel-
ligence that can formulate appropriate game-playing
strategies [9–11].

Billiards is about manipulating the balls accurately
on the table along different trajectories. This is per-
formed so that all object balls are potted, in the
given order, and the cue ball is left at an advanta-
geous position on the table, after each shot, to play
the next shot successfully. A player often uses cush-
ion (or wall/rail/bumper) impacts to achieve planned
trajectories. Cushion impacts give a great deal of vari-
ation to the game. The ball–cushion impacts change
the ball trajectories dramatically when combined with
the effects of ball spin and give the player a greater
flexibility in his game strategy (see Fig. 1).

Previously, bounces of the ball off the cushion have
been analysed by incorporating the coefficient of resti-
tution between the ball and the cushion as the only
influencing parameter and by considering the ball
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Fig. 1 Positioning the cue ball by its bounce off the cush-
ion, by imparting different ball spins to it while
still potting the object ball (shown in black)

Fig. 2 Billiard ball prior to collision with a cushion

velocity normal to the cushion as the sole variable.
According to current theory, and referring to Fig. 2,
once the ball bounces off the cushion, it will have
a velocity of eeV0 sin α normal to the cushion, and a
velocity V0 cos α along the cushion respectively, where
ee is the coefficient of restitution between the ball and
the cushion. This simple analysis does not consider the
effects of ball spin and the effect of friction during the
impact, since it treats the collision as a purely two-
dimensional (2D) phenomenon (the plane of analysis
is as given in Fig. 2).

Ball spin, both sidespin ωS
0 and topspin ωT

0 , as shown
in Fig. 2, are known to affect both the rebound speed
and the rebound angle β of the ball. The latter two
quantities are vital in order to estimate the trajectory
of the ball after the cushion collision. Even though
Marlow [12] tried to address these issues, the way
the analysis was performed involved parameters like
the impact time between the cushion and the ball for
which the values were unknown. In addition, other
assumptions made by Marlow, such as taking the
direction of sliding between the ball and the cushion

during the time of the impact as constant, do not
seem correct (it is shown later that this keeps chang-
ing, throughout impact). Most importantly, Marlow’s
analysis is not complete.

This article presents a 3D analysis of the cushion–
ball impact. For given input conditions (see Fig. 2),
the analysis enables the calculation of the rebound
conditions. This work will be useful for research on
robotic billiards that involves trajectory calculations
for the ball motion. Ball trajectory estimation is also
necessary for the systems that are used to train ama-
teur billiard players, as they need to instruct the player
how a given shot (with a given velocity and spin) will
change the configuration of the balls on the table. In
addition, a computer simulation of billiards incorpo-
rating the knowledge from this 3D impact analysis
would give the user a more realistic experience of the
game. Furthermore, this work will also be of interest to
the researchers working on the physics of billiards (for
an exhaustive list of publications on billiard physics,
see Alciatore [13]).

2 THEORY

The billiards cushion is made of pure gum rubber that
has very good rebound properties. The cross-section
of a typical billiard cushion is shown in Fig. 3. A slope
is usually provided in the cushion such that its contact
point on the ball is always above the horizontal great
circle of the ball, in order to prevent the ball from leap-
ing up in the air after impact. The following analysis
assumes that the cushion does not change its geom-
etry during the impact with the ball. This assumption
may not be valid at high ball speeds, as the normal
ball velocity at I (see Fig. 3), along the negative Z ′-axis,
will try to lift up the tip of the cushion. Also, the ball
and the cushion are assumed to have a point contact,
which again may not be true at larger ball speeds, as
the ball will start to‘sink’ more into the rubber cushion.

Fig. 3 Forces acting on the ball at the moment of col-
lision: a side view along the cushion at table
level
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Fig. 4 Forces on the ball during impact (a part of the
cushion is shown)

According to Fig. 3, the height of the contact point at
the rail (i.e. I) is h. In both snooker and pool h = 7R/5,
where R is the ball radius. The common normal line Z ′,
at the contact point with the cushion, makes an angle
of θ with the Y -axis, thus, sin θ = 2/5.

2.1 General equations of motion

Referring to Fig. 4, for the linear motion of the ball
along the X -, Y -, and Z-directions, the following can
be written

F I
x + F C

x = M ẍG (1a)

−FI cos θ − F I
y ′ sin θ + F C

y = M ÿG (1b)

−FI sin θ + F I
y ′ cos θ + FC − Mg = M z̈G (1c)

Within the duration of the collision of the ball with
the cushion, at any time instant t = τ , consider an
infinitesimally small time period �τ . Now, let �P
denote the impulse or change in momentum due to
the action of a general force F over �τ . Also, the accu-
mulated total impact up to time T is denoted as P (and
assuming that the impact started at t = 0); hence, it
can be written that

�P =
∫ τ+�τ

τ

F dt (2a)

and

P =
∑

�P =
∫T

0
F dt (2b)

The impulse–momentum relationship in conjunction
with equation (2a), along the above directions results
in the following equations

�PI
x + �PC

x = M�ẋG (3a)

−�PI cos θ − �PI
y ′ sin θ + �PC

y = M�ẏG (3b)

−�PI sin θ + �PI
y ′ cos θ + �PC = M�żG (3c)

It should be noted that the impact component due to
the force of gravity acting on the ball, mg, is absent

in equation (3c). According to de la Torre Juárez [14],
in the limit �t → 0, the non-diverging forces, such as
the weight mg, will have a negligible contribution and
thus will not influence the increase in momentum. It
should also be noted that the slope shape of the cush-
ion constrains the vertical motion of the ball. Hence, in
equation (3c), �żG = 0. Equation (3c) is rearranged as

�PC = �PI sin θ − �PI
y ′ cos θ (3d)

Similarly, for the rotational motion of the ball about
the X -axis, the following equation can be derived, with
angular velocity being denoted by θ̇

(�PI
y ′ + �PC

y )R = I�θ̇x

Where the moment of inertia of the ball I = 2MR2/5,
the above equation can be written as

�PI
y ′ + �PC

y = 2MR
5

�θ̇x (4a)

Similarly, about the Y -axis and the Z-axis

�PI
x sin θ − �PC

x = 2MR
5

�θ̇y (4b)

−�PI
x cos θ = 2MR

5
�θ̇z (4c)

2.2 Impact dynamics at I and C

At the contact point of the ball and the cushion, I, the
ball will generally slip on the cushion (rolling can be
treated as a special case of slipping, where the slip-
ping velocity is zero). The slip will take place on the
XY ′ plane (i.e. the tangential plane); also noting that
the axis Y ′ is in the YZ plane. Let the slip speed of the
ball at I be s(t) at an angle �(t) with the X -axis. The
instantaneous value of the normal impulse PI accord-
ing to equation (2b) will always be positive, since
FI is always positive. In addition, PI monotonously
increases with time t within the interval of impact.
Therefore, PI is considered as the independent vari-
able for the analysis of impact instead of the regularly
used variable of time t [15]. See Stronge [15] for an
elaborative explanation of the other principles used
within subsection 2.2.

Referring to Fig. 5, the slipping velocities along the
X -axis and the Y ′-axis are given by, respectively

ẋI = s(PI) cos[�(PI)] (5a)

ẏ ′
I = s(PI) sin[�(PI)] (5b)

However, ẏ ′
I can also be written as

ẏ ′
I = −ẏI sin θ + żI cos θ (6)

Using the Amontons–Coulomb law of friction, for
s > 0, also noting that the friction forces/impulses
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Fig. 5 Slip velocities at I and C

are opposite to the direction of sliding, the friction
impulses along X and Y ′ are

�PI
x = −μw cos[�(PI)]�PI (7a)

�PI
y ′ = −μw sin[�(PI)]�PI (7b)

where μw is the coefficient of friction between the ball
and the cushion.

From equations (3a) and (7b), the normal reaction
from the table surface to the ball is given by

�PC = {sin θ + μw sin[�(PI)] cos θ}�PI (8)

Using the earlier argument, for the impact at C, the
instantaneous impulse value PC should be chosen
as the independent variable. However, equation (8)
shows that the value of PC directly depends on the
value of PI. Hence, also for the impact at C, PI is con-
sidered as the independent variable. This makes it
possible to have PI as the independent variable for all
the impulse forces acting on the ball.

For the impact at C, the slip takes place within the XY
plane. Let s′ be the slip speed and �′ be the direction of
slip measured from the X -axis. Now, the components
of s′ along the X - and Y -directions are

ẋC = s′(PI) cos[�′(PI)] (9a)

ẏC = s′(PI) sin[�′(PI)] (9b)

Hereafter, the independent variable PI is omitted from
all equations for the sake of simplicity. When s′ > 0, at
C the impulse forces along the X and Y directions, also
using equation (8), are

�PC
x = −μs cos �′�PC

= −μs cos �′(sin θ + μw sin � cos θ)�PI

(10a)
�PC

y = −μs sin �′�PC

= −μs sin �′(sin θ + μw sin � cos θ)�PI

(10b)

where μs is the coefficient of friction between the
ball and the table surface.

2.3 Velocity relationships

The velocity of any point on the ball surface can be
expressed in vector notation as

V = V G + ω X R

where V is the vector that represents the linear veloc-
ity of a point on the ball surface, vector V G stands for
the linear centroidal velocity of the ball, ω is the vec-
tor denoting the rotational speed of the ball about its
centroid, R is the vector defining the spatial location
of such a surface point in relation to the ball centre,
and X denotes the vector product, also known as the
cross product.

Hence

�V = �V G + �ω X R (11)

From equation (11), resolving components along the
axes appropriately, slip velocities along any axis can
be expressed in terms of the centroid velocities of
the ball.

At I

�ẋI = �ẋG + �θ̇y R sin θ − �θ̇zR cos θ (12a)

�ẏ ′
I = −�ẏG sin θ + �żG cos θ + �θ̇xR (12b)

Similarly at C, along the X -axis

�ẋC = �ẋG − �θ̇y R (13a)

and along the Y -axis

�ẏC = �ẏG + �θ̇xR (13b)

Equations (12) and (13) make it possible to estimate
the slip velocities and the slip angles of the ball, both
at the table and at the cushion interface.

2.4 A description of ball dynamics

When substituting the expressions for �PI
x and �PC

x

from equations (7a) and (10a) in equation (3a), �ẋG,
which is the increment in the centroid velocity in the
X direction ẋG, is expressed in terms of the slip angles
� and �′ by

�ẋG = − 1
M

[μw cos � + μs cos �′

× (sin θ + μw sin � cos θ)]�PI
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As �PI → 0 this equation will become

dẋG

dPI
= − 1

M
[μw cos � + μs cos �′

× (sin θ + μw sin � cos θ)] (14a)

Similarly, it could be shown that

dẏG

dPI
= − 1

M
[cos θ − μw sin θ sin �

+ μs sin �′(sin θ + μw sin � cos θ)] (14b)

dżG

dPI
= 0 (14c)

dθ̇x

dPI
= − 5

2MR
[μw sin � + μs sin �′

× (sin θ + μw sin � cos θ)] (14d)

dθ̇y

dPI
= − 5

2MR
[μw cos � sin θ − μs cos �′

× (sin θ + μw sin � cos θ)] (14e)

dθ̇z

dPI
= 5

2MR
(μw cos � cos θ) (14f)

The differential equations in equation (14) describe
the motion of the ball completely. The slip angles
� and �′ can be replaced by the centroidal veloc-
ities {ẋG, ẏG, żG, θ̇x , θ̇y , θ̇z}, by using the relationships
derived in section 2.3, resulting in six simultaneous
first-order, second-degree, differential equations in
{ẋG, ẏG, żG, θ̇x , θ̇y , θ̇z}. An analytical solution for these
differential equations is extremely difficult to find.
However, a numerical solution is still possible, and the
forms as given in equation (14) can be directly used in
the numerical scheme.

3 NUMERICAL SOLUTION

As seen already, the solution to the set of six differ-
ential equations will involve a numerical method. The
numerical algorithm has to be supplied with the initial
conditions for the ball velocity, the conditions under
which different motion transitions (such as sliding
to rolling) take place, and numerical values for the
parameters involved in the equations, such as μs.

3.1 Initial conditions

Referring to Fig. 2, the initial conditions for the
centroid velocities of the ball are

(ẋG)1 = V0 cos α, (ẏG)1 = V0 sin α, (żG)1 = 0,

(θ̇x)1 = −ωT
0 sin α, (θ̇y)1 = ωT

0 cos α, and

(θ̇z)1 = ωS
0

the initial slip speeds at I and C are

s(0) =
∣∣∣∣∣
√

[V0 cos α + R(ωT
0 cos α sin θ − ωS

0 cos θ)]2

+ [−V0 sin α sin θ − RωT
0 sin α]2

∣∣∣∣∣
s′(0) = |V0 − RωT

0 |

and the slip angles are

�(0) = tan−1

[ −V0 sin α sin θ − RωT
0 sin α

V0 cos α + R(ωT
0 cos α sin θ − ωS

0 cos θ)

]

�′(0) =
{

α for V0 − RωT
0 > 0

180◦ + α for V0 − RωT
0 < 0

where α is the incident angle of the ball.
�′(0) is not defined for the condition V0 − RωT

0 = 0,
as the ball rolls on the table under this condition.

3.2 Friction coefficients and conditions for rolling

During the rolling phase slip speed s (or s′ for the slid-
ing on the table-felt) becomes zero. In this instance,
the relative motion between bodies stops at their
contact point along the common tangent and the
frictional forces become null (the effects of stick are
neglected).

1. For the condition s = 0, the ball will be rolling on
the cushion at I. �PI

x = �PI
y ′ = 0, and from equation

(3c), �PC = 0. Hence

�PC
x = �PC

y = 0 (15a)

2. For the condition s′ = 0, the ball will roll on the table
surface, and

�PC
x = �PC

y = 0 (15b)

High-speed-camera-based measurements were used,
in a previous work by the present authors, to determine
the sliding coefficient of friction between a snooker
ball and the table-felt; the sliding coefficient of fric-
tion μs was found to be between 0.178 and 0.245 [16].
Marlow [12] suggests a value of 0.2 for the game of
pool. Since the present authors have performed exten-
sive measurements of the various parameters related
to snooker [16], from here onwards the numerical val-
ues found in snooker are used for the calculations. μs is
assumed to be 0.212, as an average value. For a snooker
ball, M = 0.1406 kg and R = 26.25 mm.

3.3 Coefficient of restitution and impact
mechanics

According to Stronge [15], the energetic coefficient of
restitution ee is independent of friction and the process
of slip. e2

e is the negative of the ratio of the work done
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by the impulse force during the restitution phase to
that during the compression phase. The work done at
I by the forces acting along the axis Z ′ is

�WZ ′
I
=

∫ τ+�τ

τ

FIż′
I dt =

∫PI+�PI

PI

ż′
I dPI

Its numerical form is

(WZ ′
I
)n+1 − (WZ ′

I
)n = �PI

[(ż′
I)n+1 + (ż′

I)n]
2

(16a)

where ż′
I is the relative velocity between the ball and

the cushion in the direction of the common normal at I
(here it is assumed that the cushion does not move suf-
ficiently to affect a change in the relative velocity (i.e.
the cushion is treated as a rigid body)). FI is the normal
force from the cushion acting on the ball. When P f

I and
Pc

I denote the accumulated impulse at the termina-
tion of impulse and at the termination of compression,
respectively, it can be shown that [15]

e2
e =

− ∫Pf
I

Pc
I

ż′
I dPI∫Pc

I
0 ż′

I dPI

Rearranging the equation

WZ ′
I
(P f

I ) = (1 − e2
e)WZ ′

I
(Pc

I ) (16b)

The termination of compression occurs when the nor-
mal component of the relative velocity becomes zero,
that is

ż′
I(Pc

I ) = 0 (16c)

According to Marlow [12], the coefficient of restitu-
tion between the cushion and the ball, ee, is 0.55 for
pool. However, the authors of this work have obtained
an experimental plot for the ball–cushion impact in
snooker, where a snooker ball, under the conditions of
rolling (ωT

0 = V0/R) and no sidespin (ωS
0 = 0), was shot

to collide with the cushion perpendicularly (α = 0),
and tracked using a machine vision camera [15]. The
incident versus rebound speed plot obtained was used
to conclude that the equivalent coefficient of restitu-
tion for a rolling ball perpendicularly colliding with
the cushion has a value of 0.818, on average; the
experimental procedure is briefly outlined in section
3.5. Here it must be noted that the value of 0.818
incorporates the effects of friction and the three-
dimensionality of the impulse configuration, and only
stands as a representative value for the coefficient of
restitution.

3.4 Numerical algorithm

Equations (14) have equivalent algebraic forms as

(ẋG)n+1 − (ẋG)n = − 1
M

{μw cos(�)n + μs cos(�′)n

× [sin θ + μw sin(�)n cos θ]}�PI

(17a)

where, using equation sets (12) and (13)

tan(�)n = −(ẏG)n sin θ + (żG)n cos θ + (θ̇x)nR

(ẋG)n + (θ̇y)nR sin θ − (θ̇z)nR cos θ

and

tan(�′)n = (ẏG)n + (θ̇x)nR

(ẋG)n − (θ̇y)nR

A numerical scheme is written in MATLAB® program-
ming language. The values of V0, ωT

0 , ωS
0, and α are

the inputs to the scheme. The scheme calculates the
changes in the values of V0, ωT

0 , ωS
0, and α by increment-

ing PI in small step sizes. The smaller the value of the
increment in impulse PI (i.e. �PI) in equation (15a), the
more accurate the results. The aim is to find the cen-
troid velocities of the balls at the final accumulated
impulse value P f

I .
The numerical scheme, as shown in Fig. 6, starts by

calculating the initial centroidal velocities and the cor-
responding slip speeds and slip angles as illustrated
in section 3.1. In addition, arrays to store the inter-
mediate values of the centroidal velocities and slip
speeds and slip angles for each increment in the form
of �PI are also initiated. Then the algorithm continues
its operation by calculating increments in the cen-
troid velocities of the ball by using equation (17a) and
five other simultaneous equations. Using these incre-
ments and equations (12a), (12b), (13a), and (13b) the
new slip velocities are calculated. The code is designed
to incorporate the modifications necessary when a
rolling condition is reached at either of the sliding
contacts, as given in equations (15a) and (15b). The
values of ball velocities are saved as arrays, including
the work done at I along the Z ′-axis (i.e. WZ ′

I
, calculated

from equation (16a)). The latest parameter values are
appended to these arrays once each �PI is applied.

Again, P f
I cannot be found analytically and has to

be obtained numerically using equations (16a) and
(16b). The numerical scheme is initially stopped when
ż′

I = 0 (i.e. when the compression phase has ended),
and the corresponding value of work done is obtained
from the array containing WZ ′

I
, which will be WZ ′

I
(Pc

I ).
Now, using equation (16b), the value WZ ′

I
(P f

I ) can be
calculated, given that ee is known. The numerical pro-
cess of incrementing PI can resume again, and when
WZ ′

I
= WZ ′

I
(P f

I ), the process is terminated. The rebound
velocity values of the ball centroid are the last entries
in the arrays of the respective velocity components.
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Fig. 6 Flowchart of the numerical algorithm

Note: in order to start the numerical scheme, a
reasonable value for �PI has to be assumed. An
approximate value for P f

I can be assumed to be
(1 + ee)MV0 sin α, which is the value of the final accu-
mulated normal impulse for a horizontally moving,
non-spinning ball colliding into a solid vertical wall.
Hence, approximately for N iterations, �PI = [(1 +
ee)MV0 sin α/N ]. Obviously the values of Pc

I and P f
I

will decide the actual number of iterations that have
taken place in the scheme. An initial N of 5000 worked
satisfactorily for the scheme.

3.5 Estimating ee and μw

The experimental plot in Fig. 7 was obtained under
the conditions of ωS

0 = 0, α = 90◦, and ωT
0 = V0/R, on

a Riley® Renaissance-type snooker table, which is also
the official table brand of the World Snooker Associa-
tion and is used in all its professional tournaments.
The ball speed is calculated from an experimental
procedure involving a stationary high-speed camera
(the general experimental procedure is explained in
Mathavan et al. [16]). It is known that 0 < ee � 1. For
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Fig. 7 Rebound speed versus incident velocity, obtained experimentally and numerically

each of the experimentally obtained incident speed
values (i.e. V0) in the speed range V0 < 1.5 m/s, the
numerical algorithm was run for values of ee and
μw between 0 and 1 in increments of 0.01, and the
rebound speed ẏG(P f

I ) was obtained. Higher incident
speeds were not considered, as the assumption of a
rigid cushion may not then be applicable. The values
of ee and μw that minimize the root mean square (RMS)
value of the error between the experimental and the
numerically predicted rebound speeds should be the
actual value for the coefficient of restitution between
the cushion and the ball. Calculations showed that
the RMS error was a minimum when ee = 0.98 and
μw = 0.14.

Numerically obtained rebound speed values for
ee = 0.98 and μw = 0.14 are plotted in Fig. 7 together
with the experimentally obtained values. As seen in
Fig. 7(b), numerically obtained values of the incident

speed deviate from the experimentally obtained values
for speeds V0 > 2.5 m/s. V0 > 2.5 m/s is, quite possibly,
the velocity limit under which the rigid body assump-
tion for the cushion would be valid. V0 = 2.5 m/s is
a considerably high ball speed as far as snooker is
concerned. For oblique shots, only the ones for which
the normal component of the incident velocity of less
than 2.5 m/s would be analysed using the numerical
algorithm described in section 3.4.

4 RESULTS AND DISCUSSION

The results obtained from the numerical algorithm for
various speed–spin combinations are given in Figs 8
to 10.

In billiards, once the ball is struck by the cue stick,
the ball generally slides, where ωT

0 �= V0/R. However,

Fig. 8 Rebound speed and rebound angle versus incident angle for different rolling velocities with
no sidespin (ωT

0 = V0/R, ωS
0 = 0)
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Fig. 9 Rebound speed and rebound angle versus incident angle for different topspins of the ball,
ωT

0 = kV0/R and V0 = 1 m/s with no sidespin (ωS
0 = 0)

Fig. 10 Rebound speed and rebound angle versus incident angle for different sidespins of the ball,
ωS

0 = kV0/R and V0 = 1 m/s with the ball rolling (ωT
0 = V0/R)

the rolling condition of ωT
0 = V0/R is quickly achieved

by the action of friction between the ball and the table
(an interested reader can refer to the camera-based
tracking plots given in reference [16]). Hence, in most
instances, the ball is likely to be in rolling mode when
it collides with a cushion, also possibly with some
sidespin. The plots for the simplest case of rolling with
no sidespin are shown in Fig. 8. The plot of rebound
speed versus incident angle for different incident ball
speeds clearly shows the monotonous variation of
the rebound speed with the incident speed. The sec-
ond plot in Fig. 8 shows that the rebound angle plots
are identical for different ball speeds. The plot sug-
gests that the rebound angle is influenced only by the

incident angle for a rolling ball with no sidespin prior
to the impact.

Figure 9 depicts the rebound conditions for a ball
incident speed of 1 m/s with different types of spin
colliding with the cushion at different incident angles.
According to Fig. 9, when the ball is overspinning
before the collision, its rebound tends to be generally
higher. When the topspin of the ball is ωT

0 = 2V0/R, at
a 90◦ incident angle, the rebound speed reaches the
incident speed value of V0. For any given speed–spin
conditions, the speed loss is largest for the ball inci-
dent angles around 40◦. The rebound angles are not
greatly affected by the excessive topspin of the ball as
seen in the second plot of Fig. 9.
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Figure 10 shows the rebound characteristics for a
rolling ball with different sidespin values. The plots
provide some very interesting results. Also, when the
ball has right spin (according to billiards terminology,
the direction of ωS

0 – as marked in Fig. 2 – is called right
spin, the opposite of which is left spin), the rebound
speed exceeds the value of the incident speed. In addi-
tion, for higher values of left spin, at higher incident
angles towards 90◦, the rebound velocity exceeds the
value of the incident ball speed. The second plot in
Fig. 10 suggest that when the ball has left spin (k < 0),
and for incident angle values close to 90◦, the ball
bounces back to the side from which it approached the
cushion (see Fig. 11). This effect of the ball rebounding
to the same side has been described by Walker [17]
for billiards, and by Cross [18] in a general context
for the bounce of a ball. Cross [18] also provides the
experimental results for the rebound characteristics
of a tennis ball bouncing on a rough surface.

A plot of sliding speeds against the instantaneous
impulse value is shown in Fig. 12. The change in slip
directions as indicated by the plot suggests that the
assumption of unidirectional slip cannot be true.

Fig. 11 Ball bouncing back to the same side under left
spin conditions for α’s close to 90◦

Fig. 12 Slip–impulse curves for V0 = 2 m/s, α = 45◦,
ωS

0 = 2V0/R, and ωT
0 = 1.5V0/R (s and � are for

the slip at the cushion, and s′ and �′ are for the
slip at the table)

5 CONCLUSIONS

A 3D impact analysis for the collision of a spinning
billiard ball with a cushion is presented. Differen-
tial equations are derived for ball dynamics during
the time of impact and then the solutions are found
numerically.

Combining some of the authors’ previous experi-
mental results with the numerical solutions, the coef-
ficient of restitution for the ball–cushion collision is
determined as 0.98. In addition, the value for the
sliding coefficient of friction is found to be 0.14.

The rebound angles and speeds are given as plots
against the incident angles and speeds for differ-
ent velocities and spin conditions. Under excessive
sidespin conditions, the rebound speeds are found to
exceed the incident speeds and the ball is also found
to bounce back on the side from which it approached
the cushion.

Although this analysis provides the quantification
for many phenomena involved with cushion collisions
that are described in the billiards literature, it is
expected to be validated by tracking the spin of a bil-
liard ball. A colour pattern drawn on a white cue ball
may be used for this purpose.

© Authors 2010
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APPENDIX

Notation

ee coefficient of restitution between the ball
and the cushion

F force
I moment of inertia of the ball
M mass of the ball
N number of iterations
P accumulated impulse at any time during

impact
Pc

I accumulated impulse at the termination
of compression

P f
I the final accumulated value of

impulse
R radius of the ball
s slip speed
V0 incident speed of the ball
W work done due to impulse force

α ball incident angle with the cushion
β rebound angle
�P impulse during a time of �t
θ the angle that the common normal of the

ball–cushion contact point makes with
the horizontal

θ̇ angular velocity of the ball
μs coefficient of sliding friction between the ball

and the table
μw coefficient of sliding friction between the ball

and the cushion
� direction of slip
ωS

0 sidespin of the ball at incidence

ωT
0 topspin of the ball at incidence
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