TP 4.2

Center of percussion of the cue ball

from:
“The Illustrated Principles of Pool and Billiards”
www.engr.colostate.edu/pool
by David G. Alciatore, PhD, PE ("Dr. Dave")

Diagram:

- **At impact:**
 - Force: F
 - Ball radius: R
 - Height: h
 - Distance: a

- **After impact:**
 - Velocity: $v = \omega R$
 - Angular velocity: ω
 - Rolling without slipping

Equations:

- Ball mass: m
- Ball moment of inertia about its center: $I = \frac{2}{5} m R^2$

Horizontal impulse between the cue stick and cue ball:

$$F'$$

Linear impulse equals the change in linear momentum:

$$F' = mv$$ \hspace{1cm} (1)$$

Angular impulse equals the change in angular momentum:

$$F' \cdot a = I \cdot \omega$$ \hspace{1cm} (2)$$
For impact at the center of percussion, the ball rolls without slipping immediately, so:

\[v = \omega \cdot R \] \hspace{1cm} (3)

Using Equations 1 and 2 in Equation 3 gives:

\[\frac{F'}{m} = \frac{F' \cdot a \cdot R}{I} \] \hspace{1cm} (4)

Using the equation for I above in Equation 4 gives:

\[a = \frac{2}{5} R \]

Therefore, the center of percussion is at:

\[h = R + a = \frac{7}{5} R = \frac{7}{10} D \]