TP 4.4
Relationship between the amount of throw and cut angle

from:
“The Illustrated Principles of Pool and Billiards”
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE (“Dr. Dave”)
originally posted: 7/3/03 last revision: 12/29/05

\[v'_n = e \cdot v \cdot \cos(\theta) \]

Assuming that all speed in the normal direction is delivered from the cue ball to the object ball, from linear impulse \(F' \) and momentum:

\[F' = m \cdot v \cdot \cos(\theta) = \frac{m \cdot v'_n}{e} \]
From linear impulse and momentum in the tangent direction:

\[m \cdot v'_t = \mu \cdot F' = \frac{\mu \cdot m \cdot v'_n}{e} \]

so

\[v'_t = \frac{\mu \cdot v'_n}{e} \]

Therefore, the throw angle is given by:

\[\theta_t = \tan \left(\frac{v'_t}{v'_n} \right) = \tan \left(\frac{\mu}{e} \right) \]

\(\mu \) and \(e \) both vary with speed and cut angle. The throw angle does not vary with speed significantly. The throw angle increases with cut angle. Here are typical values for a large cut angle shot:

\[e := 0.92 \quad \mu := 0.06 \]

\[\tan \left(\frac{\mu}{e} \right) = 3.731 \text{ deg} \]

NOTE - The analysis above is a very simplified model. For a more thorough analysis that takes speed and spin effects into consideration, see TP A.14. The results in TP A.14 agree fairly closely with experimental data for various cases.