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Abstract 

The purpose of this paper is to provide illustrations and explanations of many important pool 
and billiards physics principles.  The goal is to provide a single and complete resource to help 
physics instructors infuse billiards examples into their lectures.  The main contributions of 
Coriolis in his 1835 billiards physics book are presented along with other more recent 
developments and experimental results.  Also provided are numerous links to pool physics 
references, instructional resources, and online video demonstrations.  Technical derivations and 
extensive experimental results are not included in the article, but they are all available and easy to 
find online with the references and links provided. 
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I.  INTRODUCTION 

Pool (pocket billiards) is a great physics-teaching tool.  It involves many physical principles 
including conservation of momentum and energy, friction, elastic and inelastic collisions, 
translational and rotational equations of motion, solid mechanics, vibrations, etc.  Also, practically 
all students have either played or watched pool before, so they can relate to and get excited about 
pool examples, especially if the physics understanding might actually help them play better.  
Furthermore, because the playing surface of a pool table is ideally flat and the balls are ideally 
perfectly round and homogeneous spheres of equal mass, and ball collisions are nearly elastic and 
nearly friction-free, equations written for ball trajectories can actually be solved analytically, with 
only a few idealized assumptions. 

In 1835, Gaspard-Gustave Coriolis wrote a comprehensive book presenting the physics of 
pool and billiards.  Coriolis was not only a great mathematician and physicist ... he was also an 
avid billiards enthusiast.  Coriolis’ billiards physics book has not been very widely read because it 
was written in French, and an English translation has become available only recently (in 2005 by 
David Nadler [1]).  There has also been many technical papers and online material published over 
the years expanding on pool physics knowledge [2-5].  In this article, I want to give an overview 
of many of the important and useful principles that can be used as examples in physics classes.  To 
keep this paper of reasonable length, many of the technical derivations are provided online.  I also 
plan to write more papers in the future that will delve more into some of the technical details and 
experimental results related to some of the principles. 

The paper begins with some basic pool terminology, including important effects that come 
into play when sidespin is used (i.e., when the cue ball is struck left or right of center).  Then I 
summarize many of the important principles discovered by Coriolis in the early 1800s.  Finally, I 
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present several topics for which I have done much work over the years: the 90º and 30º rules, cue 
ball “squirt” or “deflection,” and friction “throw” effects. 

Supporting narrated video (NV) demonstrations, high-speed video (HSV) clips, and technical 
proofs (TP) referenced throughout the article can be accessed and viewed online at 
http://billiards.colostate.edu.  The reference numbers used in the article (e.g., NV 3.1 and TP 
A.6) help you locate the resources on the website; and in the online article, the references are 
active links. 

II.  TERMINOLOGY 

Figure 1 illustrates most of the important terms used to describe pool shots.  The cue stick 
hits the cue ball (CB) into an object ball (OB).  After collision, the CB heads in the tangent line 
direction and the OB heads in the impact line (AKA line of centers) direction.  The key to aiming 
pool shots is to be able to visualize the ghost ball (GB) target.  This is the where the CB must be 
when it collides with the OB to send the OB in the desired direction, which is along the line 
connecting the centers of the GB and OB (see NV 3.1 and NV 3.2 for demonstrations).  The cut 
angle is the angle between the original CB direction (i.e. the aiming line) and the final OB 
direction (i.e., the impact line). 
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Figure 1  Pool terminology 

Figure 1 is what happens ideally.  Unfortunately, in real life, several non-ideal effects come 
into play.  As shown in Figure 2, when using sidespin (also known as “english”), where the CB is 
struck to the left or right of center, the CB squirts away from the aiming line (see NV 4.13 and NV 
A.17), swerves on its way to the OB (see NV 4.14 and NV 7.12), and throws the OB off the 
impact line direction on its way to the target (see NV 4.15, NV 4.16, and NV A.21).  If squirt, 
swerve, and throw didn’t exist, pool would be a much easier game to master, but the physics 
wouldn’t be as interesting. 
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Figure 2  Non-ideal sidespin effects 

Squirt and throw will be described in detail in Sections V and VI.  Swerve is caused by the 
fact that the cue stick is always “elevated” some (i.e., the back end of the cue is higher than the tip 
end of the cue) to clear the rails bordering the table.  Because of this, when you hit the CB off 
center, the ball acquires two spin components (see Figure 3) in addition to any top or bottom spin.  
One component is sidespin (about the z axis) caused by the moment created by the cue’s 
horizontal component of impact force (Fy) about the vertical (z) axis of the CB.  American pool 
players refer to this component as “english;” interesting, the British refer to it as “side.”  Pure 
sidespin has no effect on the path of the CB until it hits a rail cushion (see NV 4.10 and NV 4.11).  
The other spin component, about the horizontal aiming-line (y) axis, is called massé spin.  It is 
caused by the downward component of the cue stick’s impact force (Fz), which creates a moment 
about the y axis.  HSV A.127 shows a good example of the direction and effect of massé spin.  
The component of the friction force between the CB and cloth caused by the massé spin 
component is perpendicular to the CB’s direction of motion; hence, the CB’s path will be curved.  
With more cue stick elevation, the effect of the massé spin is greater causing the CB’s path to 
curve more (e.g., see NV 7.11, NV B.41, and NV B.42). 
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Figure 3  English and masse spin components 

III.  CORIOLIS, THE MATHEMATICIAN, PHYSICIST, AND ... BILLIARDS EXPERT 

Below is a concise and illustrated summary of some of the important pool physics discoveries 
in Coriolis’ 1835 book [1].  Additional information can be found in my series of articles 
describing and illustrating Coriois’ work [6]. 
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1. The curved path followed by a CB after impact with an OB, due to top or bottom spin, is 
always parabolic. 

Figure 4 shows the effect of both bottom spin and topspin.  If the CB had no spin, it 
would travel in the tangent-line direction (per the 90° rule in Section IV).  When the CB 
deflects off the OB with any spin (e.g., a rolling CB would have topspin), the spin axis 
remains close to its original direction immediately after impact.  This is a result of 
conservation of angular momentum, assuming for now friction between the balls is a small 
effect (which is the case, as shown in TP A.6).  The spin now creates a friction force between 
the ball and cloth that has a component perpendicular to the direction of travel (see Figure 
3), which causes the CB’s path to curve.  Because the magnitude of the sliding friction force is 
nearly constant [7], the magnitude of acceleration will also be nearly constant.  It turns out 
that the relative velocity vector defining the direction and magnitude of the sliding motion, 
and therefore the friction force vector, also does not change direction during the sliding (see 
the derivation of Equation 10 in TP A.4).  The relative slip speed gradually slows to zero and 
remains zero thereafter (i.e., the cue ball starts rolling without slipping at a certain point and 
continues to roll in a straight line, gradually slowing due to rolling resistance).  Because the 
friction force vector, and therefore the cue ball acceleration, are constant in both magnitude 
and direction, the cue ball trajectory will be parabolic, just as with any constant acceleration 
motion (e.g., projectile motion), until the sliding ceases, in which case the CB heads in a 
straight line.  TP A.4 contains the full derivation.  HSV A.76 contains infrared super-slow 
motion video of example billiard shots clearly showing parabolic traces on the cloth (caused 
by heat generated by friction created by the spinning and sliding ball).  Figure 5 shows a still 
image from the video clearing showing a parabolic “hot” trace on the cloth.  Also notice the 
“hot spots” caused by the spinning CB hopping several times after being struck with a 
downward stroke.  In the video, you can clearly see how the sliding friction force direction 
remains constant as the “hot diameter” develops, intensifies, and persists on the CB. 
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Figure 4  Parabolic CB paths 
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Figure 5  Parabolic CB paths (Courtesy of www.bskunion.at) 

 

2. To safely achieve maximum sidespin, the point of contact of the cue tip with the CB should be 
half a ball radius off center (see Figure 6). 

Obviously, the farther you hit the CB off center, the more sidespin you impart.  Although, 
if the tip offset exceeds the half-ball-radius (0.5R) amount, a miscue, where the cue tip slides 
off the CB during impact, is very likely (see NV 2.1 and HSV 2.1).  Needless to say, a miscue 
is undesirable in a game situation, because the cue ball does not head in the intended 
direction.  Alciatore (in part IV of [6]) performed some high-speed video analysis to 
experimentally determine maximum effective tip offsets possible (without miscue) with typical 
pool equipment.  The largest measured effective offset was about 0.55R.  As shown in TP 2.1, 
0.55R and 0.5R correspond to required coefficients of friction between the tip and ball of 
about 0.66 and 0.58 respectively.  To achieve these values, the leather tip must be properly 
shaped and textured and have chalk applied properly, but all serious pool players do this, so 
the 0.5R limit is appropriate for most equipment. 

In Coriolis’ book [1], there are actually several different analyses involving tip offset.  In 
one analysis (a similar analysis can be found in TP A.30), he shows that for a theoretical 
offset greater than 0.6R, the amount of english will be reduced because the cue tip will not 
slow down enough after initial impact and it will stay in contact with the cue ball for a while; 
although, he assumed the cue stick is rigid with no deflection and no cue ball squirt.  The 
claimed result is that the cue tip would rub on the spinning cue ball creating friction after 
impact, which would reduce the amount of spin.  However, high-speed video analysis 
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(described in part IV of [6]) shows that at large offsets, the cue tip deflects away from the cue 
ball and does not remain in contact.  Regardless of the various analyses concerning tip offset 
limitations, the miscue limit defined by the maximum possible coefficient of friction appears to 
be controlling factor with typical pool equipment. 
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0.5R maximum
English

 

Figure 6  Contact point offset for maximum sidespin 

 

3. With a massé shot, where the CB is struck from above off-center, the final path of the CB will 
be in a direction parallel to the line drawn between the initial base point of the CB and the 
aiming point on the table. 

The technique is illustrated in Figure 7.  The final direction of the CB path is parallel to 
line RA, which connects the original CB resting point (point R) to the aiming point on the 
cloth (point A).  Using the letters shown in the diagram, with “B” indicating the CB contact 
point, I refer to the Coriolis massé aiming system as the “BAR” method (“B” for ball, “A” 
for aim, and “R” for resting point).  This technique can be useful when trying to aim massé 
shots, where you need to curve the CB around an obstacle ball (e.g., see NV 7.11, NV B.41, 
and NV B.42).  The detailed physics and math behind the BAR massé aiming method and 
resulting ball paths can be found in TP A.19.  The math, physics, and geometry is fairly 
complex; but, conceptually, the result makes sense based on the fact that the initial spin axis 
(which is perpendicular to the RA direction) creates a friction force component that remains 
in the RA direction (per the parabolic trajectory arguments above) until the sliding ceases 
and rolling begins. 

7 

http://billiards.colostate.edu/normal_videos/NV7-11.htm
http://billiards.colostate.edu/normal_videos/new/NVB-41.htm
http://billiards.colostate.edu/normal_videos/new/NVB-42.htm
http://billiards.colostate.edu/technical_proofs/new/TP_A-19.pdf


fast
medium
slow

side view

top view

contact point
on the cue ball

( )B

theoretical
final direction

of cue ball
(in  direction)RA

aiming point
on the table cloth

( )A

resting point
of the cue ball
on the table

( )R

B
A R

aiming
line

curved
cue ball

path

 

Figure 7  “BAR” massé shot aiming method 

4. For a CB with natural roll, the largest deflection angle the CB can experience after impact 
with an OB is 33.7°, which occurs at a cut angle of 28.1° (see Section IV for illustrations and 
a lot more detail on why this is useful). 

IV.  90º AND 30º RULES 

The most important goal in pool is sending the OB into the desired pocket (i.e., “making a 
shot”).  The second most important goal is knowing where the CB will go so you can easily make 
the next shot.  Figure 8 illustrates one of the most important principles of pool related to this: the 
90° rule (see NV 3.4, NV 3.5, and TP 3.1).  It states that when the CB strikes an OB with no 
topspin or bottom spin, the two balls will always separate at 90°.  In other words, the CB will head 
exactly in the tangent line direction and persist along this line.  This is true regardless of the cut 
angle (see Figure 8).  Note – in the remainder of this paper, the CB and OBs will be assumed to all 
have equal mass.  This assumption is usually very close to reality at a pool table.  The CB can 
sometimes be heavier (e.g., with some coin operated tables, where a mechanism under the table 
can automatically sort the CB from the OBs based on larger size and/or larger weight).  The CB is 
more typically slightly lighter than the OBs because it experiences more collisions, some abrasion 
during tip impact, and abrasion with sliding on the cloth, all of which cause wear and reduced 
mass. 
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Figure 8  The 90° rule 

The 90° rule is a direct result of the principles of conservation of energy and conservation of 
linear momentum (see TP 3.1).  All of the CB’s momentum in the impact line direction (see 
Figure 8b) gets transferred to the OB, assuming an elastic collision.  The result is that the final 
paths of the balls are perpendicular.  This is what happens ideally.  In real life, there is a small 
amount of energy loss and retention of impact-line momentum when the CB hits the OB.  This 
effect is often quantified with a coefficient of restitution (COR).  The COR for perfect (ideal) balls 
would be 1, representing 100% conservation of energy.  Typical pool balls have a COR closer to 
0.93.  Therefore, the 90° rule is actually closer to the 85° rule (see TP A.5). 

The 90° rule, assuming elastic collisions, applies exactly only for a stun shot, where the CB is 
sliding without topspin or bottom spin at impact with the OB.  The one exception to the 90° rule is 
when the CB hits the OB perfectly squarely, with no cut angle.  In this case, the CB stops 
completely, transferring all of its speed to the OB.  This is called a stop shot (see NV 3.6, HSV 
3.1, and HSV 3.2).  Notice how in HSV 3.1, to achieve a stop shot, one must often hit the CB 
below center to create bottom spin, which gradually slows, so the CB has no spin at impact with 
the OB. 

Figure 9 illustrates the physics involved with a stop shot.  As the CB slides along the cloth, 
the friction force between the ball and cloth creates a torque about the ball’s center that gradually 
reduces (decelerates) the bottom spin (see Figure 9b and HSV 3.1).  If the CB were to continue to 
slide, the friction force would continue to change the CB’s spin, slowly building up forward roll, 
as shown in Figure 9a (see also: NV B.10).  Note how the CB actually decelerates (as indicated 
qualitatively by the relative lengths of the straight arrows in the figure) as the topspin builds, 
because the sliding friction force is in the opposite direction as the ball’s motion (see the friction 
arrows in the figure).  Figure 9c shows what happens if the CB starts out with over-spin, which 
implies more topspin than the natural roll amount.  The spin rate decelerates (as indicated 
qualitatively by the relative shortening of the curved arrows) until rolling develops (see HSV 
B.46).  In this case, the CB actually accelerates because the sliding friction force is in the same 
direction as the ball’s motion (see the figure).  When the CB is rolling, there is no longer any 
sliding friction, and the CB continues to roll naturally until the ball slows to a stop (due to rolling 
resistance) or hits something (e.g., another ball or a rail).  If the CB is struck with the cue tip at the 
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center of percussion (COP), the ball will roll immediately.  For a pool ball, the COP is at 70% of 
the ball’s height above the table surface, for a level cue (see TP 4.2).  To get over-spin (e.g., as in 
Figure 9c), the CB must be struck above this height, which is risky due to likelihood for miscue.  
Over-spin also occurs when a rolling CB hits an OB (e.g., see HSV B.26). 
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Figure 9  Conversion of vertical-plane spin to normal roll (side view) 

As described above, with most pool shots, the CB will be rolling by the time it reaches the 
OB.  The exception is where bottom spin and/or fast speeds are being used.  When the CB is 
rolling, the 90° rule no longer applies.  What applies instead is governed by what I call the 30º rule 
(see Figure 10, NV 3.8, NV 3.9, NV 3.10, NV B.43, and NV B.44).  It states that when a rolling 
CB hits an OB close to a half-ball hit (see Figure 11), the CB will deflect approximately 30° away 
from its initial aiming line.  In TP 3.3, I show the detailed physics and math behind the rule, along 
with a modern proof for the numbers in Coriolis’ 4th conclusion (see Section III).  Wallace and 
Schroeder [8] and Onoda [9] also present the supporting technical background for the 30° rule. 
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Figure 10  30° rule 
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Figure 11  Half-ball hit 

As illustrated in Figure 10 and demonstrated in NV 3.8, you can use your hand to help 
visualize the 30° CB direction.  As shown in Figure 12, if you form a relaxed but firm V-shape 
(peace sign or victory symbol) with your index and middle fingers, the angle between your fingers 
will be very close to 30°.  NV 3.8, NV 3.9, and NV B.44 show how to use the Dr. Dave peace sign 
in practice.  If you point one of the fingers in the aiming line direction, the other finger will 
indicate the direction the CB will travel after impact. 

Fortunately for pool players, as shown in Figure 13, the 30° rule applies over a wide range of 
ball-hit fractions (see TP 3.3).  The center of the range is the half-ball hit, but the CB deflection is 
very close to 30° for ball-hit fractions as small as 1/4 and as large as 3/4.  The exact CB deflection 
angle θc as a function of cut angle φ is given by (see Equation 38 in TP A.4): 
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The derivation is fairly involved and complication; but, qualitatively, the shape in Figure 13 
makes sense.  For a small ball-hit fraction (i.e., large cut angle), the spin axis of the ball after 
impact is close to the spin axis of the original rolling CB, and very little translational speed is lost 
in the collision, so there is not much sliding between the CB and table after impact, and the CB’s 
direction doesn’t change very much (i.e., 0≈cθ ).  For a large ball-hit fraction (i.e., small cut 
angle), much of the CB’s translational speed is transferred to the OB, and the spin that remains on 
the CB after impact, which is almost all of the original roll topspin amount, creates sliding friction 
and accelerates the ball forward (as in Figure 9c above).  So in this case, the CB’s original 
direction also doesn’t change very much (i.e., 0≈cθ ).  In the center of the range, both the post-
impact translational motion (along the tangent line) and the acceleration due to friction caused by 
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the CB’s rotation (as with Figures 4 and 7 above) combine to cause a deflection angle in between 
the original aiming line and the tangent line.  The maximum CB deflection angle happens to occur 
close to a half-ball hit (30º cut angle), as derived in TP A.4.  As determined by Coriolis (see also: 
TP 3.3), the actual value is approximately a 0.53-ball hit, corresponding to a 34º cut angle. 

 

Figure 12  Using your hand to visualize the 30° rule CB paths 

 

Figure 13  Large margin of error for 30° rule 

12 

http://billiards.colostate.edu/technical_proofs/new/TP_A-4.pdf
http://billiards.colostate.edu/technical_proofs/TP_3-3.pdf


Figure 14 illustrates the ball-hit-fraction range, and corresponding cut angles, to illustrate the 
wide range of shots for which the 30° rule applies.  With a 1/4-ball hit (see Figure 14a), the center 
of the CB is aimed outside of the object-ball edge such that the projected cue-ball-path passes 
through 1/4 of the OB.  With a 1/2-ball hit (see Figure 14b), the center of the CB is aimed directly 
at the edge of the OB such that the projected cue-ball-path passes through 1/2 of the OB.  With a 
3/4-ball hit (see Figure 14c), the center of the CB is aimed inside of the object-ball edge such that 
the projected cue-ball-path passes through 3/4 of the OB.  These three cases cover a fairly large 
range of cut angles between 14° and 49° (see TP A.23).  Most pool shots are in this range. 
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Figure 14  Various ball-hit fractions 

The 30° rule and peace sign technique are extremely useful in practice.  This is a great 
example where a little knowledge of the physics of the game can be a big help.  The rule can be 
used to detect possible scratches (where you pocket the CB by mistake), plan carom shots (where 
you deflect one ball off another into a pocket), plan ball avoidance or break-up shots, and 
strategically plan CB position as you run a rack of balls.  Examples of all of these types of shots 
can be found on my website (e.g., see NV 3.7, NV 3.10, NV 7.2, NV 7.3, NV 7.4, NV A.1, and 
NV B.46). 
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V.  SQUIRT 

Figure 15 shows selected stills from a high-speed-video clip that illustrates the physics 
behind squirt.  The full clip, which was filmed at 2000 frames/sec, can be viewed online at HSV 
A.76a.  Still “a” is just before contact.  Stills “b” through “e” represent 0.0015 sec during which 
the tip is in contact with the ball.  This is actually quite typical for most pool shots ... the cue tip is 
in contact with the CB only for about 1-2 thousandth of a second, regardless of shot speed.  In still 
“f” the tip hasn’t fully recovered from the compression yet as the CB is separating.  Still “g” is 
after separation.  The line and arc appearing in each still mark the initial cue stick and CB 
positions.  Notice how much the cue tip deflects away (down in the diagram) from its original line 
of action.  Also notice how much the cue tip deforms (e.g., see still “d”).  Those leather tips, which 
haven’t changed much in 200 years, are quite resilient.  The black arrows in still “c” illustrate the 
effect that causes squirt.  While the tip is in contact with the ball, the ball starts rotating.  This 
rotation (counterclockwise in the diagram) pushes the cup tip down a little during contact.  
Because the end of the shaft has mass, it takes force to move the end of the shaft down as the ball 
rotates.  An equal and opposite reaction on the CB is what causes the CB to squirt away from the 
cue aiming line. 
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Figure 15  Close-up of cue tip impact during an off-center hit 

Shepard [10] and TP A.31 provide the complete derivation relating squirt angle to tip offset 
and the “effective endmass” of the cue, which is a function of geometry and material properties of 
the end of the shaft.  The endmass relates to how far the transverse elastic wave travels down the 
shaft (from the tip) during the brief contact time between the tip and ball.  In other words, the 
“endmass” is a measure of how much effective mass at the end of the cue comes into play due to 
transverse (sideways) motion of the tip during contact with the CB.  Experiments [11, 12] have 
suggested that only the last 15-20 cm (6-8 in) of typical cue shafts contribute to “endmass.”  This 
is why cue manufactures have been successful with reducing squirt by using a smaller tip and 
shaft diameter, using a smaller and lighter ferrule (the white plastic component between the tip and 
the shaft), and drilling out the end of the shaft, all to reduce the effective endmass [13].  It would 
be interesting to do more experiments to quantify and better model how mass and stiffness 
distribution affect endmass, and to measure the elastic wave speed and characterize the 
dependence of transverse stiffness, but we or others have not done this yet. 

In the squirt analysis, the tip is assumed to remain in contact with the ball as the ball rotates 
(see HSV A.76a for visual evidence of how well a chalked leather tip "grabs" the ball); otherwise, 
a miscue results, where the tip slides off the CB and the CB heads in unpredictable directions.  
While the tip and ball are in contact, the velocity of the tip and ball are equal at the point of 
contact.  This assumption, along with linear and angular impulse-momentum principles, is used in 
TP A.31 to derive the following result: 
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where, as illustrated in Figure 16, a is the squirt angle, b is the amount of tip offset from the 
center (i.e., the tip contact point eccentricity), R is the ball radius (1 1/8 in = 28.6 mm), mb is the 
mass of the CB (usually 6 oz = 170 gm), and me is the effective endmass of the cue (usually in the 
5-15 gm range).  The squirt angle is very close to a linear function of tip offset, provided miscues 
and partial miscues are not occurring.  Cross [14] has verified this theoretical result with a series 
of experiments.  The linear relation makes it easy to compensate for squirt when using sidespin 
[15].  Cross [14] also investigated how squirt angle changes with tip offset under conditions of cue 
tip slip, but this doesn’t occur with non-miscue pool shots. 
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Figure 16  Squirt terminology 
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Figure 17 shows a squirt-testing robot students and I have designed and built to perform 
studies with the factors that influence squirt.  The machine consists of a spring-loaded carriage on 
a linear rail that consistently and accurate delivers the cue at a desired speed and CB tip-contact 
point.  The cue is held perfectly horizontal throughout the entire stroke (i.e., the cue is not 
“elevated”) to eliminate CB swerve as a factor.  This is an important feature because swerve can 
vary with cue elevation, ball speed, shot distance, and ball and cloth conditions. 

 

Figure 17  Cue squirt testing machine 

Figure 18 shows the results of an experiment to show how end-mass affects a cue’s squirt.  In 
the experiment, a mass was added to the cue at different positions.  The masses used in the 
experiment weighed 0.3 grams and 1.1 grams.  The two curves show the end-mass effect very 
clearly.  With more mass added to the end of the cue, and the closer the mass is to the tip, the more 
the cue ball will squirt.  Also, if mass is added beyond a certain distance from the tip, it has no 
effect on the amount of squirt.  For the cue tested, the distance was about 18 cm (7 in).  Notice 
how the curves level out to the same squirt value beyond the 18 cm (7 in), regardless of the 
amount of the added mass. 
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Figure 18  Squirt vs. position of added mass 

One more thing to note in Figure 18 is how the squirt seemed to dip a little lower for the 
larger added mass, before flattening out.  When we first saw this, we wondered if adding even 
more mass at this point would reduce the squirt even further.  If that were the case, we might have 
discovered a new way to make a low-squirt cue.  Unfortunately, adding more mass at that point 
did not cause additional decreases in squirt. 

VI.  THROW 

Figure 19 illustrates all of the important terminology and physics concerning throw.  Throw 
occurs any time there is relative sliding motion between the CB and OB surfaces at impact.  In the 
figure, the relative motion is a result of CB sidespin; so the resulting throw would be called spin-
induced throw (SIT).  Throw can also be caused by cut angle alone, in which case it is called cut-
induced throw (CIT).  In Figure 19, the right (counterclockwise) sidespin creates a sliding friction 
force that pushes the OB to the left. This force is what creates the throw angle.  The spin imparted 
to the OB is called transferred spin.  In this case, the throwing force to the left creates clockwise 
(right) transferred spin on the OB.  Spin transfer is an important effect with bank shots (e.g., see 
NV A.21). 
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Figure 19  Throw and spin transfer terminology and physics 

Throw angle θthrow depends on the speed of the shot v, the cut angle φ, the amount and 
direction of CB spin w, and the friction properties of the balls.  The complete derivation can be 
found in TP A.14, and here is the main result: 
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where am, bm, and cm are parameters used to characterize how dynamic sliding friction varies with 
the relative surface speed between the CB and OB at impact. 

The 1/7 term in the “min” function in Equation 3 results from a requirement that relative 
sliding motion between the CB and OB cannot reverse direction during impact.  In the limiting 
case, the relative velocity between the ball surfaces goes to zero during impact (i.e., sliding ceases 
during impact).  The total possible friction impulse during impact is limited by this 1/7 factor (see 
TP A.14).  Previous treatments of pool-ball throw in the literature (e.g., Chapter 4 in [4]), have not 
included the no-slip-reverse constraint in the friction model. 

The exponential model for friction used in Equation 3 is based on experimental data from 
Marlow (p. 245 in [3]) and Alciatore (TP B.3).  The coefficient of dynamic friction between pool 
balls is far from constant ... it is much lower at higher relative speeds between the ball surfaces.  
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The exponential model of friction in Equation 3 fits experimental data quite well (see TP A.14 and 
TP B.3).  Possible reasons for why the friction coefficient decreases with higher relative surface 
speed include:  surface asperities might glance over each other (and not intermesh as easily) with a 
moving surface, and boundary layer effects due to entrapped and displaced air might have a larger 
effect at higher speeds. 

Figure 20 shows an example plot generated from Equation 3.  This particular plot shows how 
the amount of throw changes with cut angle for a stun shot (i.e., sliding CB in translation only) at 
various speeds (slow, medium, and fast).  Useful conclusions one can observe from the figure 
include: 

• For small cut angle shots (i.e., fuller hits), the amount of throw does not vary with shot 
speed, but increases with cut angle.  The reason for this is the 1/7 factor described above.  
At small cut angles, sliding between the balls ceases during impact, and the coefficient of 
sliding friction has no effect on the total tangential impulse experienced during the 
collision. 

• For larger cut angle shots (i.e., thinner hits), the amount of throw is significantly larger 
for slower speed shots as compared to faster speed shots.  This is due to the lower 
coefficient of sliding friction resulting from the faster relative speed between the sliding 
ball surfaces during impact.  If friction did not vary with speed (e.g., if a constant were 
used for m in Equation 3), there would only be a single curve in Figure 20, and the right 
portion would be a horizontal, straight line. 

• The amount of throw decreases a little at large cut angles, but not by much (especially for 
slower speed shots).  Again, this is due to the sliding friction speed dependence.  At 
larger cut angles, the relative speed of sliding is larger for a given ball speed. 

• The maximum throw occurs at close to a half-ball hit (30º cut angle). 

Experiments performed by Jewett [16] and Alciatore [17, 18] have verified many of these and 
other trends predicted by Equation 3.  Jewett’s data is shown in Figure 21.  The exact throw 
values in Figure 20 cannot be directly compared to those in Figure 21 because the exact physical 
properties of the balls, and the precise speeds used for “slow,” “medium,” and “fast,” are not 
available.  However, the point of the figures is to show that the experimental data do exhibit the 
same trends predicted by the model.  Other experiments (e.g., for follow and draw shots [18]) also 
verify trends predicted by the model. 
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Figure 21  Experimental stun-shot cut-induced-throw data (Courtesy of Bob Jewett) 
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Numerous graphs and contour plots showing how throw varies for all types of shots can be 
found in TP A.28 and TP B.3.  Depending on the speed, angle, and type and amount of spin on 
the ball, the throw amount can vary significantly.  Obviously, to play pool at a high level, one’s 
aim must be compensated to account for throw variations with different types of shots. 

VII.  CONCLUSIONS 

This article has presented a collection of pool and billiards principles that make for excellent 
class examples of many fundamental physics topics including friction, energy, momentum, 
inelastic and elastic collisions, kinematics, and equations of motion.  I have used pool examples in 
many engineering and physics classes over the years, and students seem to enjoy and relate to 
them.  Due to size constraints, I have not included derivations or much experimental data in the 
article.  Instead, I have referenced online resources where the details can be found.  I wanted this 
article to be comprehensive summary document with good illustrations and complete lists of 
online and print references for educators who want to use pool and billiards examples in their 
courses.  In future articles, I plan to present more details concerning derivations and experimental 
results for some of the more interesting and complex topics (e.g., throw and squirt).  As a final 
note, if you plan to assign any pool or billiards analysis questions for homework in any of your 
physics classes, there is a useful summary of typical values for all important physical parameters 
in [19]. 
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