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Abstract Three-dimensional simulations of the frictional

collision between solid balls moving on a rough surface are

analyzed in this paper. The analysis is performed in the

context of pool and snooker, two popular games in the

pocket billiards family. Accurate simulations of ball

motion in billiard games are useful for television broad-

casts, training systems and any robotic game playing sys-

tems. Studying solid ball collisions in a three-dimensional

space requires careful consideration of the different phe-

nomena involved in ball motion such as rolling, sliding and

ball spin about a general axis. A set of differential equa-

tions are derived describing ball dynamics during colli-

sions. In the absence of explicit analytical solutions to the

differential equations, a numerical procedure is performed

to determine post-collision ball velocities and spins after

collision. In addition, the paper also presents a methodol-

ogy to analyze the curved, slip trajectories of balls imme-

diately after impact. The results presented here, when

compared with some experimental shots, show that the

percentile errors in post-collision velocities are reduced by

the proposed method. The prediction accuracies for ball

travel direction are increased twofold by the proposed

impact simulation algorithm.

Keywords Impulse with friction � Frictional impact �
Solid balls � Billiards � Snooker � Pool � Massè

List of symbols

e Coefficient of restitution between the balls

F Force

I Moment of inertia of the balls

M Mass of the balls

N Number of iterations

P Accumulated impulse at any time during impact

PI
c Accumulated impulse at the termination of

compression

PI
f The final accumulated value of impulse

R Radius of the balls

s Slip speed between the balls

s0 Slip speed between the cue ball and the table

s00 Slip speed between the object ball and the table

V0 Incident speed of the ball

W Work done due to impulse force

x Ball position on the table along the X-axis

y Ball position on the table along the X-axis

z Ball position on the table along the X-axis

DP Impulse during a time of Dt

h The angle that the common normal of the ball–

cushion contact point makes with the horizontal

lbb Coefficient of sliding friction between the balls

ls Coefficient of sliding friction between the ball and

cushion

U Direction of slip between the balls

U0 Direction of slip between the cue ball and the table

U00 Direction of slip between the object ball and the table

x Angular speed of the ball

x0
T Topspin of the ball at incidence

x0
S Sidespin of the ball at incidence

_xr Resistance of the table surface to ball sidespin

Superscripts

C Cue ball
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O Object ball

Subscripts

G Parameters measured about ball centroid

I Along normal impulse between the balls

n Iteration number of numerical simulation

N Common normal at the point of contact between the

balls and the table (for forces)

Nf Terminal iteration number of numerical simulation

R Along the surface at the point of contact between the

balls and the table (for frictional forces)

S At the end of the slipping phase of a ball

1 Introduction

Snooker is a cue sport belonging to the pockets billiards

family. Another related, popular game is pool. Since the

physical and dynamical phenomena involved in both these

games are exactly the same, billiard physics and billiard

dynamics are usually employed to refer to these. In addi-

tion, when referring to both games together, the common

terms ‘pocket billiards’ or simply ‘billiards’ are used

throughout this text. The games uniquely combine a high

level of strategic play and superior physical skill. Interest

in snooker has grown steadily in the last few years with an

exponential growth found in the Far East. Almost half of

the UK’s population watched the World Championship on

the BBC in 2011 with as much as 3.9 million people

watching a single session, whereas the Chinese television

station CCTV5 reported viewing figures as high as 30

million [1]. Pool is an equally popular game, consisting of

a number of variants such as eight-ball, which is very

played very commonly in the United States.

Pocket billiards has always been associated with physics

due to the classical nature of concepts such as friction and

collision, associated with it. It is important to note that the

earliest associated literature is found as early as 1,835 [2].

A number of publications on billiards dynamics have been

published in the last two decades, e.g., Salazar and San-

chez-Lavega [3], de la Torre Juárez [4] and Cross [5, 6]. In

addition, recent research has concentrated on robotic bil-

liards playing systems [7–10], trainer-assistance systems

[11–13], and on the development of strategies for game

play [14]. In this context, the work described in this paper

is part of a research effort to develop a robotic manipulator

for snooker [15]. Each of these three sets of systems

described above has the need to analyze various available

shots, for a given table state and select the best next shot

available. The ability to impart different spins and veloci-

ties to the cue ball in combination with some exquisite

collision dynamics present between balls results in a

variety of ball trajectories giving the players a high level of

flexibility (see Fig. 1).

Nowadays, a vast number of online virtual snooker

games are available, e.g., Snooker Skool from Yahoo!

Games. Although most of the online games simulate

snooker in 2D, 3-dimensional versions are also found [17].

In addition, the TV broadcasts make use of ball tracking

systems such as HawkEye [18] that also simulate and

predict ball behavior. Accurate ball collision simulations

will make these virtual games and predictions more

realistic.

Traditionally, ball collisions have been analyzed without

incorporating the effect of friction, and the object ball is

supposed to move along the line connecting the ball centers

at the instant of impact [19]. A comprehensive review of

the existing literature shows that there are two categories of

collision models for billiards. The first ones do not take ball

spin into account in the analysis of ball–ball collisions at

all. The works of de la Torre Juárez [4] and Wallace and

Schroeder [20] belong to this category. Three other works,

Marlow [21], Kondic [22] and Domenech [23], consider

the effect of ball spin. Marlow [21] highlights the effects of

ball spin, but has not proposed a collision model. The work

of Kondic [22] is limited as it only treats the case of head-

on collisions. Domenech [23] provides a detailed study of

billiard ball collisions. The paper clearly identifies the

tangential impulse components, which are present due to

the 3D spins of the balls, under different possible scenarios

at the interfaces between the balls and between the balls

and the table, e.g., unidirectional slips and different stick–

slip regimes. For each of the situations, analytical solutions

have been given. Moreover, the paper considers the case of

the cue ball under pure rolling, and no sidespin, colliding

with an object ball, and identifies the evolution of different

regimes, based on stick and sliding, at the different material

interfaces during impact. However, it fails to identify the

evolution of different regimes for a general impact, e.g.,

one that involves various levels of top or bottom spin and
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Fig. 1 Resulting cue ball locations after a ball-pot for different

topspin and sidespin imparted on the cue ball [16]
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sidespin, thereby not being able to predict analytical

solutions for post-collision ball velocities and angles.

The forgoing literature summary on ball collisions

indicates that there are no generalized collision models

available, involving ball spin, that can be applied to any

given shot in snooker. In the absence of such a model, the

best complete model that can predict a given shot is given

by Wallace and Schroeder [20]. It was shown, in Mathavan

et al. [24], that there are errors, of up to 6�, in the directions

of post-collision ball motion predicted by the model of

Wallace and Schroeder [20]. This amount of angular

uncertainty is sufficient enough to allow an object ball,

which is as close as 200 mm to a pocket before the colli-

sion, to miss the pocket by a distance of 20 mm. The

resulting effect on the cue ball is equally harmful, due to

the unexpected exit angle after collision, as it may end up

in a totally different position on the table. As potting

accuracy and precisely predicting final cue ball positions

after a shot is of paramount importance in pocket billiards,

the high deviation between the actual and predicted ball

trajectories will affect the accuracy of the simulated game

play. Therefore, analysis is required regarding the very

general impact between snooker or billiards balls to pro-

vide realistic simulations.

In the following analysis, initially, a general solution

will be derived for the problem of two identical balls col-

liding obliquely, and at the end, the values applicable for

snooker will be substituted. Here, the problem of the cue

ball, C, obliquely impinging on to another object ball O is

analyzed (see Fig. 2). Both the cue and object balls are

assumed to have equal mass and radius. In Fig. 2, it is

important to note that ball C does not spin about its frontal

axis (about the direction of V0), this condition is only

prevalent during a massé shot and is not normally

encountered in snooker.

When two spheres collide, a contact is made over a finite

size of area on their surface, due to the deformation present

at the interface. The contact area between the spheres

during impact is usually estimated through the Hertz

theory. However, a point contact is assumed here. The

assumption of a point contact has also been used by other

researchers such as Kondic [22] and Domenech [23].

In this paper, collisions between two snooker balls are

studied using the principles of impact mechanics. The next

section describes theoretical derivations. Simulation results

are subsequently presented and discussed extensively, fol-

lowed by a conclusion section.

2 Theory

The balls are assumed to be moving on a flat surface;

hence, the point of their contact will be at a height of

R from the surface. This is depicted in Fig. 3.

2.1 General equations of motion

In Fig. 3, for ball C, for the linear motion along X, Y and Z

directions

F1 þ FC
R;x ¼ M€xC

G ð1aÞ

�FI þ FC
R;y ¼ M€yC

G ð1bÞ

F2 þ FC
N � mg ¼ M€zC

G ð1cÞ

Here, F denotes the instantaneous normal force acting

on any of the points of contact between the balls and the

table interface, as shown in Fig. 3. In Eq. (1a), superscripts

denote the sphere to which a particular parameter belongs

to. The subscript G stands for the centroid values of a

sphere. Thus, €zC
G denotes the centroid acceleration of C

along the Z-axis.

By considering an infinitesimal time period of Dt, the

increment and the accumulated impulse values can be

expressed as,

O
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0

Fig. 2 A general oblique impact between balls (x0
T direction is given

by the right-hand grip rule)
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Fig. 3 The forces acting on the balls during the impact
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DP ¼
ZtþDt

t

F � dt ð2aÞ

and,

P ¼
X

DP ¼
Z t

0

F � dt ð2bÞ

The impulse–momentum change relationship along the

above directions result in the following equations.

For cue ball C, at time t, consider an increment Dt in

time, from Eqs. (1a) and (2a)

DP1 þ DPC
x ¼ M _xC

G t þ Dtð Þ � _xC
G tð Þ

� �
ð3aÞ

�DPI þ DPC
y ¼ M _yC

G t þ Dtð Þ � _yC
G tð Þ

� �
ð3bÞ

DP2 þ DPC
N ¼ M _zC

G t þ Dtð Þ � _zC
G tð Þ

� �
ð3cÞ

It should be noted that in Eq. (3c), the impact compo-

nent due to gravity acting on the ball, mg, is absent. de la

Juarez [4] suggests that in the limit Dt ? 0, non-diverging

forces, such as those due to gravity, will have a negligible

contribution on momentum changes.

Moment of impulse and angular momentum about the

center of mass for ball C about X, Y and Z directions are

given by,

DP2 þ DPC
y

� �
R ¼ 2MR2

5
xC

x t þ Dtð Þ � xC
x tð Þ

� �
ð3dÞ

�DPC
x R ¼ 2MR2

5
xC

y t þ Dtð Þ � xC
y tð Þ

h i
ð3eÞ

�DP1R ¼ 2MR2

5
xC

z t þ Dtð Þ � xC
z tð Þ

� �
ð3fÞ

Similar sets of equations can also be derived for ball O.

The impulse change of momentum equations equivalent to

(3) will be

�DP1 þ DPO
x ¼ M _xO

G t þ Dtð Þ � _xO
GðtÞ

� �
ð4Þ

Five other equations, similar to (3b)–(3f) above, can be

written for the object ball as well. Due to space restrictions,

they are omitted here.

2.2 Impact dynamics

At the contact point of the balls, A, relative to ball O, let

that ball C has a relative speed s(t) at angle U(t) with the X-

axis (the relative velocity vector will lie on the XZ plane).

The instantaneous value of the normal impulse PI (the

accumulated value of all DPIs until time t), which is always

positive within the interval of impact, monotonously

increases with time; thus, in this analysis, it is taken as an

independent variable, instead of the usual variable of time t

[25]. Slip speeds along the X and Z axes, respectively, are

as follows:

_xA ¼ _xC
A � _xO

A ¼ s PIð Þ cos U PIð Þð Þ ð5aÞ

_zA ¼ _zC
A � _zO

A ¼ s PIð Þ sin U PIð Þð Þ ð5bÞ

The normal component of relative velocity,

_yA ¼ _yC
A � _yO

A ¼ _yC
G � _yO

G ð5cÞ

For the nominal slipping speeds to be along the positive

X and Z axes, when the balls are sliding on each other at

their contact point A, from the Amontons-Coulomb law,

DP1 ¼ �lbb cos U PIð Þð ÞDPI ð6aÞ

DP2 ¼ �lbb sin U PIð Þð ÞDPI ð6bÞ

where lbb is the coefficient of sliding friction between the

balls.

Notably, depending on the value of vertical sliding

velocity between the balls, i.e., _zA as given in Eq. (5b),

some of the impulses in the equation sets (3a) or (4) will be

zero. If _zA is negative, ball C will have more downward

velocity (along the Z-axis) at the contact point A, and the

frictional impulse along Z, DP2, between the balls will be

acting on the balls in the directions as shown in Fig. 3. This

condition is given by,

DP2 [ 0 ð6cÞ

If ball C is to remain on the table, from Eq. (3c),

DP2 þ DPC
N\0 ð6dÞ

The conditions in (6c) and (6d) can only be satisfied

when,

DPC
N\0 ð6eÞ

and apparently, it is impossible to satisfy the condition in

(6e) as the table cannot apply a ‘negative’ reaction on the

ball. Thus,

DPC
N ¼ 0 ð6fÞ

Condition (6c) in turn says that the associated frictional

impulses are also absent, i.e.,

DPC
x ¼ 0 and DPC

y ¼ 0 ð6gÞ

Here, ball C will lift up from the table, like the cue ball

in a ‘jump’ shot; Kondic [22] and Domenech [23] also

acknowledge this effect. However, it is assumed in this

paper that during the time of the impulse, it remains at the

same spatial location, just above the table, without altering

the geometrical configuration presented in Fig. 3. This

assumption is reasonable since the time of impulse between

two balls is very small and is in the range of 0.3 ms [21].

Conversely, if _zA is positive, then,

S. Mathavan et al.



DPO
N ¼ 0; DPO

x ¼ 0 and DPO
y ¼ 0 ð6hÞ

Finally, if _zA is zero,

DP2 ¼ 0 ð6iÞ

When (6i) prevails, both the balls will be either in

contact with the table or airborne. Hence,

DPC
N ¼ DPO

N ¼ 0 ð6jÞ

and the associated friction components will also be zero.

If ball C is touching the table at any instant during

impact, to satisfy the condition, _zC
G t þ Dtð Þ � _zC

G tð Þ ¼ 0 and

from (3c)

DPC
N ¼ �DP2 ¼ lbb sin U PIð Þð ÞDPI ð7aÞ

Else, if ball O is on the table, to satisfy the condition,

_zO
G t þ Dtð Þ � _zO

G tð Þ ¼ 0

it can be shown that

DPO
N ¼ DP2 ¼ �lbb sin U PIð Þð ÞDPI ð7bÞ

If ball C touches the table at point D with the table

plane, slip s0 and slip angle U0 with the X-axis (s0 will lie on

the XY plane), and from (7a), for the sliding condition,

DPC
x ¼ �ls cos U0 PIð Þð ÞDPC

N

¼ �lbbls sin U PIð Þð Þ cos U0 PIð Þð ÞDPI ð8aÞ

Similar expressions can be derived for along the Y-axis

and those for ball O along X and Y involving slip s00 and

slip angle U00 with the X-axis (s00 will be on the XY plane).

Let these be denoted by (8b)–(8d).

Here, ls is the sliding friction coefficient between the

balls and the table. Sliding speeds are

_xD ¼ _xC
D ¼ s0 PIð Þ cos U0 PIð Þð Þ ð9aÞ

_yD ¼ _yC
D ¼ s0 PIð Þ sin U0 PIð Þð Þ ð9bÞ

Or

_xB ¼ _xO
B ¼ s00 PIð Þ cos U00 PIð Þð Þ ð9cÞ

_yB ¼ _yO
B ¼ s00 PIð Þ sin U00 PIð Þð Þ ð9dÞ

Hereafter, the practice of having the independent var-

iable PI with the dependent variables is dropped to keep

the equations compact, e.g., s0 PIð Þ this is simply written

as s0.

2.2.1 Conditions for rolling

When rolling occurs, slip speed s (or s0 and s0 for the sliding

on the table) becomes zero. At this instance, the relative

motion between bodies stops at their contact point along

the common tangent. The frictional forces become null.

1. When there is no slip between the balls (i.e., s = 0),

which is a common occurrence depending on the initial

conditions, as shall be seen shortly, where both the

spheres will be rolling on each other at their contact

point A.

DP1 ¼ DP2 ¼ 0

consequently,

DPO
N ¼ DPO

x ¼ DPO
y ¼ 0

2. When s0 = 0, DPC
x ¼ DPC

y ¼ 0 and ball C will roll on

the plane without sliding.

3. When s00 = 0, DPO
x ¼ DPO

y ¼ 0 and ball O will roll on

the plane without sliding.

2.2.2 Coefficient of restitution

According to Stronge [25], the energetic coefficient of

restitution e, is independent of friction and the process of

slip. e2 is the negative of the ratio of the work done by the

impulse force during the restitution phase to that during the

compression phase. Let P
f
I ;P

c
I denote the accumulated

impulse at the termination of impulse and at the end of

compression, respectively. Then, it is possible to show that

the work done is

DWy ¼
Z

FI : _yAdt ¼
Z

_yAdPI ð10aÞ

The coefficient of restitution is given by,

e2 ¼
�
R P

f
I

Pc
I

_yAdPIR Pc
I

0
_yAdPI

ð10bÞ

This can be rearranged as,

Wy P
f
I

� �
¼ 1� e2
� �

Wy Pc
I

� �
ð10cÞ

The termination of compression occurs when the normal

component of relative velocity becomes zero, i.e.,

_yA Pc
I

� �
¼ 0 ð10dÞ

2.3 Velocity relationships

The velocity of any point on a sphere’s surface can be

written with respect to its centroidal velocity, in vectorial

notation as,

V
*

¼ V~Gþx~KR~ ð11aÞ

At contact point A

Numerical simulations of the frictional collisions



_xC
A ¼ _xC

G � RxC
z ; _zC

A ¼ _zC
G þ RxC

x ; _xO
A ¼ _xO

G þ RxO
z and

_zO
A ¼ _zO

G � RxO
x

ð11bÞ

Similar expressions can be derived at D and B for the

cue and object ball, respectively.

Using

DV
*

¼DV~GþDx~� R~ ð11cÞ

the finite difference counterparts of these equations are as

follows:

D _xC
A ¼ D _xC

G � RDxC
z ;D _zC

A ¼ D _zC
G þ RDxC

x ;D _xO
A

¼ D _xO
G þ RDxO

z and D _zO
A ¼ D _zO

G � RDxO
x ð11dÞ

D _xC
D ¼ D _xC

G � RDxC
y and D _yC

D ¼ D _yC
G þ RDxC

x ð11eÞ

D _xO
B ¼ D _xO

G � RDxO
y and D _yO

B ¼ D _yO
G þ RDxO

x ð11fÞ

2.4 Solution for the ball velocities

Using the expression in the previous sections, and

depending on which ball is airborne (i.e., whether DPO
C ¼ 0

or, i.e., DPO
N ¼ 0), two sets of 12 differential equations

(DEs) can be derived. Moreover, another set of 12 DEs can

be expressed for the condition of DP2 ¼ 0, where both the

balls stay on the table or both are airborne. None of these 3

sets of DEs have exact solutions. A numerical solution is

still possible. For example, for the problem of rotating

spheres colliding into each other in free space, Kane and

Levinson [26] have used a numerical scheme to obtain the

variation of the sliding velocities, etc., during the time of

impact, for both the spheres. A numerical solution is sought

in this paper additionally.

The work done during an increment of the normal

impulse between the balls, DPI , must also be calculated

numerically, using Eq. (10a),

Wy

� �
nþ1
� Wy

� �
n
¼ DPI

_yAð Þnþ1þ _yAð Þn
� �

2
ð12Þ

See Sect. 2.4.3 on the explanation on the numerical

scheme employed.

2.4.1 Initial conditions

When PI = 0, the centroidal velocities of ball C,

_xC
G

� �
1
¼ V0 sin h; _yC

G

� �
1
¼ V0 cos h; _zC

G

� �
1
¼ 0; ð13aÞ

with the rotational speeds being,

xC
x

� �
1
¼ �xT

0 cos h; xC
y

� �
1
¼ xT

0 sin h; xC
z

� �
1
¼ xS

0:

ð13bÞ

For ball O, the centroidal velocities are as follows:

_xO
G

� �
1
¼ 0; _yO

G

� �
1
¼ 0; _zO

G

� �
1
¼ 0; xO

x

� �
1
¼ 0; xO

y

� �
1
¼ 0;

xO
z

� �
1
¼ 0:

ð13cÞ

Also,

s 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 sin h� RxS

0

� �2þ RxT
0 cos h

� �2
q				

				 and Uð0Þ

¼ tan�1 � RxT
0 cos h

V0 sin h� RxS
0


 �

ð13dÞ

Between ball O and the table,

s0ð0Þ ¼ 0: ð13eÞ

Between ball C and the table,

s00 0ð Þ ¼ V0 � RxT
0

		 		 and U00ð0Þ ¼ 0: ð13fÞ

2.4.2 The values of friction and restitution coefficients

Here, the values of the friction coefficients between the

balls, lbb, and that between the balls and the table, ls, and the

coefficient of restitution between the ball, e, are determined.

The authors determined the sliding coefficient of friction

between the balls and table (ls) in snooker as between 0.178

and 0.245; see [24]. The average value of 0.21 for ls is used

for simulations. The values for lbb and e parameters pre-

sented in the literature are vague. Only Marlow [21] has been

found to report about these. Marlow predicts a value of 0.06

for lbb for well-polished balls. Furthermore, when the balls

have any foreign material, such as chalk, on their surface,

according to Marlow lbb may be as high as 0.2. Contradic-

torily, a variation of lbb in the form of,

lbb ¼ 9:951� 10�3 þ 0:108e�1:088s

is also put forward by Marlow [21], where s denotes the

slip speed between the balls. The experimental process in

obtaining the aforesaid variation did not seem reliable

enough. According to Marlow, e is greater than 0.92. It is

believed that the high speed camera measurements taken

by these authors, and partly described in Mathavan et al.

[24], are far superior to the techniques used by Marlow

[21], and these results are used for the calculations and

simulations performed.

The experimental plot shown in Fig. 4 is used in con-

junction with these numerical simulations to obtain the

values of the coefficient of restitution and the value of

sliding friction. The fundamental idea is to replicate the

experimental results by numerical simulations, using two

random numerical values for the above parameters by a

trial-and-error procedure. The experimental plot shown in

Fig. 4 was obtained under the conditions of cut angle (h),

sidespin (xS
0) and topspin (xT

0 ) assuming the values of, 0�,

S. Mathavan et al.



0 and V0

R
, respectively (see Fig. 2). For each of the incident

speed values, V0, given in Fig. 4, the value of centroid

velocity of the object ball at the termination of impact,

_yO
G P

f
I

� �
, was found numerically for the restitution coeffi-

cient between the balls, e, in the range 0.7–1.0 and the

friction coefficient (lbb) between 0 and 0.2, both in 0.01

increments. For given values of friction and restitution

coefficients between the balls, i.e., lbb and e, the RMS

value of all the errors between the experimental and the

numerical values for each of the incident velocities given

in Fig. 4 was obtained. The values of a ball–ball friction

value (lbb) of 0.05 and a restitution coefficient (e) of 0.89

were found to have the least RMS error value. The

agreement of these values with Marlow’s [21] values of

0.06 and 0.92 should be noted. Figure 4 also includes the

numerically predicated results for a lbb of 0.05 and an e of

0.89.

2.4.3 Numerical algorithm

For snooker balls, the mass, M, and radius, R, are

0.1406 kg and 26.25 mm, respectively. The numerical

scheme is written in MATLAB� programming language.

The values of initial cue ball velocities (V0, xT
0 ;x

S
0) and

the angle of collision, h, are the inputs to the scheme. The

smaller the value of the increment in the normal impulse

between the balls PI, i.e., DPI , which is chosen as the

independent variable for this problem, the more accurate

the results will be. The aim is to find the centroid

velocities of the balls at the final accumulated impulse

value P
f
I .

In order to assume a reasonable value for increment of

the normal impulse between the balls, DPI , to start the

numerical scheme, an approximate value for P
f
I can be

taken as 1þ eð ÞMV0 cos h, which is the value of the

impulse had ball O been a solid wall. Hence, for N

iterations,

DPI ¼
1þ eð ÞMV0 cos h

N
ð14Þ

Clearly, the values of final and end of compression

phase impulse values (Pc
I and P

f
I ) will decide the actual

number of iterations that have taken place in the scheme.

For each iteration of the scheme, the state of the balls is

determined at contact points A, B and D, i.e., it is determined

whether they are in the state of rolling or sliding, which balls

are airborne, etc. For this purpose, the equations Sect. 2.2 are

used. Then, for each increase of DPI , i.e., normal impulse

between the balls, the code initially starts by calculating the

increments in the impulses that determine the changes in

velocity components for both the balls; equation sets (3) and

(4) are used. Consequently, velocity increments are esti-

mated followed by the determination of new ball velocities,

both linear and rotational. The increment in work done is

also estimated using Eq. (12). Now, state of motion at points

A, B and D are evaluated and the scheme is continued until

the normal relative velocity between the balls, _yA—as in Eq.

(5c)—becomes negative, i.e., the termination of the com-

pression phase. The work done up to this iteration is Wy Pc
I

� �
.

Equation (10c) is used to determine Wy P
f
I

� �
. The numerical

algorithm is stopped when,

W ¼ Wy P
f
I

� �
: ð15Þ

2.5 Parabolic path subsequent to impact

Execution of the numerical scheme that is described in

Sect. 2.4.2 shows that, in general, both the cue ball and the

object ball will have spins about their frontal velocity axes,

as shown in Fig. 5. The ball shown in Fig. 5 has a spin

component of x1 about its centroid velocity V. In this case,

irrespective of the other two spin components, the ball will

move along a curved path. This is called massé in billiards

[21]. Curved shots can be made by elevating the cue when

striking the ball. Curved ball trajectories are also produced

due to frictional percussions during the impact between

two balls or that between a ball and a cushion. The second
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Fig. 5 A ball that spins about its frontal velocity axis

Numerical simulations of the frictional collisions



type is of interest here. However, the derivations given in

this section are, essentially, applicable for any general

curved shot.

Here, the example of the object ball O is used to derive,

with appropriate symbols, the description of trajectory of

the ball under the massé conditions. The effect of table

friction will generally impart a spin about the velocity axis

of the object ball, as in a spinning bullet. This will curve

the path of ball O immediately after the termination of

impact, making the final direction of movement different to

that at the termination of impulse. Its effect will be very

prominent for high values of lbb. In mathematical terms, at

the termination of impact, when n is equal to Nf, the final

step of the numerical algorithm, this condition for curving

is created when

U
0

Nf
¼ bNf

ð16Þ

Here bNf
denotes the direction of its velocity of the

center of gravity of ball O (i.e.,), given by

tan bNf
¼

_yO
G

� �
Nf

_xO
G

� �
Nf

ð17Þ

and U0 being the direction of slip on the table. The sub-

sequent curved path of the ball can be shown to describe a

parabola, conveniently expressed in the X0Y0 coordinate

system, which is rotated from XY axes by w (see Fig. 6).

Where

tan w ¼ � 1

tan U0Nf

ð18Þ

U0Nf
is obtained from the numerical algorithm explained in

Sect. 2.4.3. Expressions for XV
0 and YV

0 have been derived

in the detailed analysis of Hopkins and Patterson [27] on

the curved path of a bowling ball.

The sliding can be shown to stop at time Ts, given by,

TS ¼
2s
0

Nf

7ls

ð19Þ

when the ball is at S (see Fig. 6) or the coordinate (Xs
0Ys
0)

in the X0Y0 system (where s
0
Nf

is the slip velocity of O, on

the table, at the termination of impact, obtained at the final

iteration of the numerical scheme). Using the derivations of

Hopkins and Patterson [27], and also using Eq. (18), it is

possible to develop the expressions for Xs
0 and Ys

0, together

with the velocity components _X0S and _Y 0S at the end of the

slipping process.

The final velocity at S,

VS ¼ _X0S
� �2þ _Y 0S

� �2 ð20aÞ

At an angle of hS with respect to the XY coordinates,

given by,

hS ¼ wþ k ¼ wþ tan�1
_Y 0S
_X0S

 !
ð20bÞ

Equations (20a) and (20b) completely define the post-

slip motion of the ball, except its sidespin. The sidespin of

the ball immediately after impact is also estimated using

the numerical algorithm.

The following describes the instantaneous value of

sidespin at the end of slip (t ¼ TS),

xO
z tð Þ ¼ xO

z

� �
Nf
� _xrt; if xO

z

� �
Nf

[ 0 and t\
xO

z

� �
Nf

_xr

					
					
ð21aÞ

xO
z tð Þ ¼ xO

z

� �
Nf
þ _xrt; if xO

z

� �
Nf

\0 and t\
xO

z

� �
Nf

_xr

					
					
ð21bÞ

xO
z tð Þ ¼ 0; if t�

xO
z

� �
Nf

_xr

					
					 ð21cÞ

_xr is the resistance of the table to sidespin of the

ball, which was measured by the first author to be

22 rad/s2 for snooker balls [15]. It should also be noted

that clockwise rotation of the ball (i.e., right-spin), as

seen when looked down at the table, is taken as

positive. While the ball is still under the slipping

process, its velocity and spin conditions are also

available from the work of Hopkins and Patterson [27].

In addition, the ball’s sidespin can still be estimated

using Eq. (21a).

XY ψ
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XS’

Y’

X’
YV’

XV’

λ

S

Fig. 6 Curved path of object ball O
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3 Results and discussion

Five experimental snooker shots, involving ball collisions,

presented in Mathavan et al. [24] are revisited here to

check the accuracy obtained through the methodology

given in this paper. The authors used an overhead, high

speed camera to track the balls with a 1-mm resolution and

0.25-mm accuracy on the table [24]. An experimental

procedure was devised, based on the velocity–time plots

for the cue ball, before the impacts, with only the shots that

had the cue ball rolling before the impacts. Here, the top-

spin, xT
0 , is equal to the frontal ball velocity divided by the

ball radius, i.e., V0

R
. However, the sidespins of the cue ball

before the collisions could not be measured [24]. The

sidespin values of the cue ball at impact, on the other hand,

are considered to be very low as the cue ball was hit on the

great circle that is coplanar with the cueing direction as

much as possible. Table 1, below, shows the simulated and

measured values of the ball velocities at the end of the

slipping phase after impacts (i.e., VS). The data that are

used in this section, and the methodology adopted to obtain

it, are presented in a greater detail [24].

The five experimental shots, for which the data were

presented in Mathavan et al. [24], are also simulated with

the impact algorithm presented in this paper. A comparison

of the results, presented in Table 1, with that obtained

through the predictions of Wallace and Schroeder [20], as

given in Mathavan et al. [24], shows that percentile errors

are one order lower with the predictions presented in the

paper (also seen in Fig. 7). Snooker is a game where the

object is not only to pot the object ball, but also to leave the

cue ball in a position advantageous for any subsequent

shots. So, the post-impact velocity of the cue ball velocity

is important in predicting its subsequent position on the

table. Hence, from a billiard robot perspective, the algo-

rithm presented in this paper provides a superior ball

position predictor for the cue ball.

For the shots given in Table 1, the results of the pre-

dicted and measured angles are presented in Table 2. All

predicted angles are benchmarked against the measured

angles for the five shots. When compared with the pre-

dictions that do not consider ball spin [20, 24], the analysis

performed in this work reduces the error in the cue ball exit

angles by up to six times, as shown in Fig. 8. The error in

object ball exit angles is reduced from 9–12 % as presented

in Mathavan et al. [24] to just under 5 % as given in

Table 2 and Fig. 8. For a realistic billiards simulation, the

object ball exit angle is of utmost importance as it directly

affects the potting accuracy. The foregoing error reductions

in cue and object ball exit angles show that the model

incorporating the effects of spin predict the collisions better

than the ones that do not take spin into account.

Even though the prediction errors have reduced when

compared to methods that do not consider ball spin, a

considerable amount of error still remains. In order to

quantify the measurement inaccuracies with the experi-

mental procedure, an estimation of the associated errors is

performed here. Given that the ball tracking accuracy of

the camera system is 0.25 mm, and that the ball collision

experiments were performed with 45 frames per second

(fps) acquisition [24], the accuracy of velocity measure-

ments is 0.011 m/s. Consequently, for the velocities in the

range of 0.94–1.73 m/s, for the five experimental shots, the

measurements ambiguities will be in the order of 0.5–1 %

with slower shots more prone to the measurement of error.

Hence, in the velocity prediction errors of up to ±5 % with

Table 1 Theoretical

predictions, assuming zero

sidespin (xS
0), and experimental

results of ball speeds

Cue ball

velocity

V0 (m/s)

Topspin

xT
0 (rad/

s)

Cut

angle

h (�)

Meas. vS

for cue

ball (m/s)

Meas. vS

for object

ball (m/s)

Predict. vS

for cue

ball (m/s)

Predict. vS

for object

ball (m/s)

Error in

vS for cue

ball (%)

Error in vS

for object

ball (%)

1.539 58.63 33.83 0.816 0.836 0.914 0.831 10.70 –0.62

1.032 39.31 26.36 0.52 0.629 0.520 0.599 –0.03 –5.00

1.364 51.96 40.52 0.925 0.7 0.917 0.676 –0.90 –3.52

1.731 65.94 46.5 1.275 0.787 0.128 0.780 0.18 –0.94

0.942 35.89 18.05 0.365 0.581 0.383 0.579 4.81 –0.38
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Fig. 7 Comparison of the prediction errors for the five shots for the

cue and object ball speeds, Vs, by the proposed method and that of

Wallace and Schroeder [20]
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the proposed method (Fig. 7), a considerable portion must

emanate from the theory, mainly from the assumptions

made in the form of point contacts and negligible cushion

deformations. As far as the angles are considered, at least

4–5 successive ball locations were used to derive the exit

angles [24], involving a distance of 150–200 mm, and

given the 0.25 mm accuracy of the vision system, the

angular errors will be less than 0.1�. Hence, the errors

found for the exit angles in Table 2 and Fig. 8 must be

solely attributed to the theoretical assumptions made at the

start of the paper.

4 Conclusions

This paper provides a comprehensive methodology

whereby motion characteristics after a collision between

two balls, moving on a plane, can be predicted. The

algorithms presented here make use of general theories

of dynamics of spheres rolling on a flat surface and

general frictional impact dynamics under the assumption

of point contacts between the balls under collision and

that of the table. Spin dynamics are extensively consid-

ered. Finally, quantification is provided for the slipping

phases of the ball after impact. Exit velocities and angles

immediately after impact, which heavily depend on the

spin dynamics, are predicted for the first time and then

compared with some experimental shots. The improved

prediction accuracies clearly indicate the superiority of

this spin model to the current models that do not con-

sider the effects of ball spin on impact. These predictions

presented here will be useful for robotic and other virtual

systems that are designed to play snooker and billiards,

in general.
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