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Toward a  
Competitive  
Pool-Playing Robot

F
rom behind a closed door in a university cam-
pus hallway comes the distinctive clacking 
sound of a pool game in progress. This isn’t a 
student lounge, but rather a laboratory where 
we’re developing a vision-based, intelligent 

robotic system to play competitive pool. Named Deep 
Green, the system currently shoots at a better-than-ama-
teur level, and our goal is to advance the system to be able 
to challenge a proficient human opponent, ultimately at 
a championship level.

Pool—by which we loosely refer to all cue sports, 
including billiards, carom, and snooker—is somewhat 
misunderstood, more likely to evoke images of shifty 
characters in smoky bars than advanced robotics. It 
evolved in the royal courts of medieval Europe as an 
indoor version of croquet. Today, pool is enjoying a 
resurgence of popularity worldwide. Variations are 
played in almost every country, and pool was recognized 
as a demonstration sport in the 1998 Nagano Olym-
pics. According to a 2005 survey,1 more than 35 million 
people played pool that year in the US alone, and pool 
ranked as the eighth most popular participation sport, 
just after cycling and fishing.

The first attempt to automate pool was the Snooker 
Machine developed at the University of Bristol in the late 
1980s,2 which culminated with a televised game on BBC’s 
science program QED.3 Since then, researchers have 

developed a number of pool-playing robotic systems4-6 as 
well as a training system that has a computer vision com-
ponent but doesn’t involve robotic actuation.7,8 

Deep Green
As Figure 1 shows, Deep Green is centered on a  

3-degree-of-freedom (DOF) industrial gantry robot, 
which is mounted to the ceiling to avoid impeding human 
access to the table. A digital camera, the global vision 
system (GVS), is attached to the ceiling aiming down 
toward the table, accompanied by an array of directional 
lights. Attached to the gantry’s vertical post is a 3-DOF 
spherical robotic wrist that, combined with the gantry’s 
linear motion, affords the robot complete reachability 
over the workspace. 

The end-effector, illustrated in Figure 2, includes two 
distinct cue devices, one based on a linear electromag-
netic motor and the other actuated pneumatically. The 
electromagnetic cue can be finely controlled to strike up 
to a velocity of 3 meters per second, which is sufficient for 
normal play, whereas the pneumatic cue is used solely for 
power breaks and strikes at 12 m/s. A small eye-in-hand 
camera, the local vision system (LVS), is also attached to 
the end-effector, as is a pick-and-place vacuum tool for 
ball-in-hand conditions and automatic racking. 

The table itself is a standard 4-foot × 8-foot coin-oper-
ated pool table, and all devices are connected to a single 
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PC. While the system has been designed to play 
the popular game of 8 Ball, with slight modifica-
tions it could play any other variation of pool. 
Figure 3 shows a number of example shots. 

ROBOTICS
Rather than build our own hardware, we 

based Deep Green on standard commercially 
available, albeit customized, components. This 
makes the system relatively inexpensive and 
quick to deploy, and it allowed us to focus our 
effort on the computational challenges.

Camera calibration
The system’s robotic aspects rely primarily on 

computer vision. Before using the cameras, we 
had to calibrate them so that they could accu-
rately determine the ball locations within the 
table’s metric coordinate reference frame. Using 
standard techniques, we determined the cam-
eras’ intrinsic parameters, including factors to 
correct for the radial distortion inherent to optical sys-
tems. It was also necessary to rectify the table plane to 
compensate for perspective distortions that result from 
the GVS retinal plane not being aligned exactly parallel 
to the table surface, which is difficult to achieve manu-
ally to the desired accuracy.

The retinal plane and the table are related by a trans-
formation known as a homography, a mapping between 
two planes. The standard technique for determining a 
homography involves extracting a minimum of four cor-
responding point locations between a planar pattern and 
its image. This technique is awkward to apply in Deep 
Green as the pattern must be large (the table’s size) as 
well as very flat and accurate.

Alternatively, we exploit an invariant property of the 
projective space that uses a simple target comprising 
perpendicular lines, such as a large carpenter’s square. 
This technique lets us integrate measurements taken at 
various positions on the table into a single homography, 
which we estimate up to an affinity. With a few addi-
tional simple measurements, we can then recover the 
remaining rotation and scale parameters that map the 
image pixels to metric locations on the table surface.

Ball localization and identification
At runtime, Deep Green acquires a GVS image when 

the balls come to rest and unwarps it to remove the radial 
and perspective distortions. It then compares this image 
with a set of statistics—pixel means and variances—
acquired from a set of approximately 30 background 
images of the table, without any balls present. For each 
pixel, if the difference between the foreground and back-
ground pixel values exceeds some threshold value of the 
background standard deviation, the system judges that 
pixel to be foreground, that is, possibly a ball. 

Because this filter passes significant noise, the system 
applies a connected-components algorithm and only 
admits those regions large enough to be valid balls. It 
then processes these ball regions using circle-extraction 
and best-fit routines, leading to an accurate estimate of 
each ball’s center location.

Once Deep Green has accurately identified the ball 
locations, it sends the circular subregions defining each 
ball to a color-indexing routine to determine the ball 
identities. It must know the exact identity (number) of 
each ball, as the formal rules for 8 Ball require nominat-
ing a ball and pocket for each shot. Offline, the system 
forms a 2D histogram in normalized RGB space for each 
of the 16 ball types from a collection of images of each 
ball, taken at different aspects and at various locations 
on the table. At runtime, it compares the color space his-
togram of each ball region with this database and uses a 
histogram similarity metric to classify the ball.

Despite strong similarities between the colors of differ-
ent ball types, and reuse of colors among the stripes and 

Figure 1. Deep Green robotic pool-playing system. The system is centered 
on a 3-degree-of-freedom gantry robot mounted to the ceiling to avoid 
impeding human access to the table.

Figure 2. End-effector components.
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solids, the color-indexing method can reliably determine 
each ball’s identity. Once the system has accurately local-
ized and identified each ball, it can simulate the table 
state for shot planning.

Robot calibration
The challenge in using a standard gantry platform is its 

limited accuracy, as industrial robotics tend to be highly 
precise and repeatable but not terribly accurate. While 
it’s possible to design a gantry robot with fine-grained 
accuracy, such a device would be expensive, delicate, 
and unlikely to maintain its accuracy while absorbing 
the impacts required to place shots. A more reasonable 
approach is to demand less accuracy from the primary 
positioning device and rely upon the vision system for 
calibration and correction. 

One calibration technique involved both the LVS and 
GVS cameras.9 We repeatedly positioned the robot over 
a series of circular patterns placed on the table surface. 
We then used the correspondence between the robot 
joint encoder values and the centers of the extracted cir-
cles within the GVS image to determine the functional 
relationship between the robot coordinate frame and the 
table plane. This technique reduced robot positioning 

error from the order of centimeters to within 0.6 mm on 
average, with a standard deviation of 0.3 mm.

Eye-in-hand visual servoing
While robot calibration rendered an improvement, a 

positioning accuracy of 0.6 mm is insufficient to success-
fully pot many long shots. It may be possible to further 
refine our calibration technique, successively unraveling 
the robot’s many mysterious nonlinearities. However, 
the likely result of such an effort would be a very brittle 
system—any change in the system parameters, due to 
aging or other extrinsic conditions such as vibrations or 
temperature, would require a tedious recalibration.

To improve positioning accuracy, we have developed 
an eye-in-hand visual-servoing system in which the LVS 
camera is mounted on the end-effector with its optical 
axis pointing roughly along the direction of the cue. 
The LVS uses the known ball locations determined by 
the GVS as visual landmarks to detect and compensate 
for positioning errors accumulated during the gantry’s 
coarse motion.

LVS correction. Consider the nearly perfect straight shot 
illustrated in Figure 4. In this GVS image, the inscribed 
line is defined by the extracted center locations of the 

Figure 3. Example shots. (a) 9 ball in the side pocket—composite of three images. (b) Combination shot: 4 ball in the corner pocket, 
off of the 7 ball—composite of four images. (c) Combination shot: 6 ball in the corner pocket, off of the 1 ball—composite of four 
images. (d) 5 ball in the corner pocket—time-exposure image.

(a) (b)

(c) (d)
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cue and object balls prior to placing the shot. The 
rendered circles are a sequence of three extracted 
positions of the object ball, at times t0 to t2, once the 
shot has been placed. The centers of these circles fall 
on or close to the line, indicating that the robot was 
positioned to make a very accurate straight shot. 
The final resting positions of the cue and object balls 
at time tf also fall on this line, further supporting the 
shot’s quality. 

From the LVS’s vantage, this is the ideal line. When 
the robot is servoed to its shot position, as deter-
mined by the GVS, it accumulates error. By analyz-
ing the LVS image, and comparing the line connect-
ing the current cue and object ball centers with the 
ideal line, the system can calculate transformations 
that correct for the robot positioning error.10 

Figure 5a shows an LVS image acquired after the 
robot has been servoed to its shot position, using 
only the information from the GVS. The current 
(red) and ideal (green) lines aren’t aligned, indi-
cating positioning error. After the system executes the 
automatic alignment procedure, the current line overlaps 
almost exactly with the ideal line, as shown in Figure 
5b, and the shot will therefore be very close to a perfect 
straight shot.

Alignment methods. We have developed two different 
methods to align the robot position with the LVS ideal 
line.10 The simpler one is iterative and based entirely on 
2D LVS image data. The other method uses knowledge of 
the 3D rigid transformation between the robot wrist coor-
dinate reference frame and the LVS optical frame. This 
transformation, known as the tool control frame (TCF) 
matrix, is determined offline in a calibration stage.

Figure 6 plots the result of an experiment designed to 
characterize the performance of these two methods. A 
total of 90 straight shots were executed. Thirty of these 
shots used only information from the GVS and robot 
calibration, 30 more applied alignment using the image-
based method, and the final 30 used the position-based 
method. We calculated the angular error of each shot by 
extracting the object-ball center locations at a number 
of (at least two) positions along their trajectories using 
the GVS and comparing the angle of this line with the 
line defined by the cue and object balls prior to placing 
the shot (similar to Figure 4).

We plotted the angular errors for each of the 3 
sets of 30 shots in ascending order. Alignment using 
either method significantly reduced the angular error. 
Without alignment, the mean absolute error was 
1.8 degrees. With alignment, the error was reduced 
by more than two thirds, to 0.51 degrees and 0.56 
degrees for the image- and position-based methods, 
respectively. While the accuracy is similar for both 
alignment methods, the position-based method is 
approximately 40 percent faster. Once the straight 
shot is aligned accurately, the TCF matrix can be used  

to further rotate and translate the cue around the cue- 
ball center to execute a cut shot of any desired angle and 
spin.

GAMING
For those who play pool only casually, skill is the limit-

ing factor, and sinking the current ball is usually the sole 
concern. For more advanced players, however, strategy 

Figure 4. Straight shot. Intermediate object ball locations fall on a line 
defined by initial cue and object ball locations.

Figure 5. LVS correction. (a) Current (red) and ideal (green) lines 
before alignment. (b) After alignment, current and ideal lines 
overlap.

(b)

(a)
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becomes a key element of the game, and professionals are 
known to plan five or more shots ahead for a given table 
state. For a robotic system to play competitively, it must 
therefore strategize computationally, which involves both 
predicting and planning future table states. This requires 
the interplay of physics simulation and search.

Physics simulation
To predict the table state after a shot so that subse-

quent shots can be planned, an accurate physics model 
is necessary. Spin is an essential element of the game, 
and imparting spin on the cue ball by displacing and 
angling the cue at impact is a technique used to control 
the interaction and placement of balls following a shot.11 
The physics model therefore involves conserving not only 
linear but also angular momentum.

We have developed a physics simulator that predicts a 
shot’s outcome from a derived physics model.12 Unlike 
physics simulators that use the more common numerical 
integration approach, our method operates in the con-
tinuous domain, predicting the times of pending events 
such as collisions or transitions between motion states. 
Our technique returns an exact analytic solution based 
on a parameterization of the separation of two moving 
balls as a function of time. The resulting equation is a 
quartic polynomial that can be solved either iteratively 
or in closed form to determine the collision time. A simi-
lar derivation exists for other events, such as ball-rail and 
-pocket collisions and transitions from sliding-to-rolling 
and rolling-to-stationary states.

Compared to integration, our approach is more 

accurate, requiring no discrete time step; and 
time efficient, requiring approximately two to three 
orders of magnitude fewer computations per shot. 

This added efficiency is especially important when the 
physics simulator is used in expanding a game tree, as 
many different shots—sometimes tens of thousands or 
more—might need to be simulated prior to making a 
decision.

Our physics simulator was the basis for the Compu-
tational 8 Ball Tournaments at the 10th and 11th Inter-
national Computer Olympiads.13 These tournaments let 
teams develop different strategy engines and compete 
using the common physics simulator.

One consideration in modeling the physics was shot 
noise. When a human or robotic player takes a shot, error 
in the cue’s position and velocity makes each shot noni-
deal. To make the simulation more realistic and the com-
petition more challenging, we added zero-mean random 
Gaussian noise to each of the five shot parameters that 
determine the outcome of a shot: two angles (θ,φ), two 
offsets (a, b), and the striking speed V.14 The sigma values 
of each distribution were empirically determined to cause 
one missed shot every 10 shots on average, a success rate 
similar to that of advanced human play. When planning 
a shot for robotic play, a noise model based on the robot’s 
calibrated positioning accuracy can be used to determine 
the probability of a given shot’s success.

Search
With the physics simulator’s ability to predict a shot’s 

outcome, it’s then necessary to evalu-
ate many possible shot sequences to 
determine the best shot to place given 
the current table state. Our approach 
to this search is based on the mini-
max game tree used in games like 
chess and checkers.15,16 While the 
basic concept is the same as in chess, 
one difference is that pool is played in 
a continuous, rather than a discrete, 
domain. The size of the search space 
for any particular shot is therefore 
truly infinite, rather than the huge 
but finite search space of chess.

Another unique consideration in 
pool is shot noise. In practice, each of 
the five shot parameters has an element 
of uncertainty that can be modeled as 
a probability distribution. For this rea-
son, we have adapted the expectimax 
search tree, which has been applied to 
games like backgammon that have a 
probabilistic component. Because pool 
is played in a continuous domain, the 
chosen tree search algorithm incorpo-

•
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Figure 6. Angular error in straight shot tests with LVS correction. Alignment reduced 
the error by more than two thirds, to 0.51 degrees and 0.56 degrees for the image- and 
position-based methods, respectively. 
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rates statistical sampling to account for uncertainty in shot 
execution. The utility of a future table state is weighted by 
its probability of occurrence, and the weighted utilities of 
the children of each node are combined when considering 
which path to traverse.

Empirical evaluation of strategic play
To explore the benefits of strategic play in pool, we 

executed a set of experiments using this tree-search 
framework. 

Methodology. We simulated a series of 8 Ball tourna-
ments involving 19 competitors, all with identical shot-
generation algorithms. Eighteen of the competitors used 
different tree-search depths, tree-scoring variations, and 
evaluation-function variations; the 19th used a depth-
zero “greedy” shot-selection algorithm based solely on 
the probability of the current shot’s success with no 
regard for the resulting table state or future shots. This 
greedy player had the same skill level as the other com-
petitors but thought like an amateur.

Three tournaments were played with three different 
noise models reflecting the players’ technical skill level. 
For the high-noise model, about 80 percent of balls were 
sunk as planned; for low noise, about 90 percent; and for 
zero noise, all shots were executed exactly as planned. All 
players in each tournament used the same noise model and 
search algorithm. Each tournament therefore isolated per-
formance as a function of tree-search depth and evaluation-
function variation. A search depth of 1, for example, con-
siders not only the current shot but also all shots resulting 
from the current shot. The various scoring and evaluation 
functions differed in how they rated a leaf node’s utility as 
well as in how they combined the information from child 
nodes in propagating back up the tree. 

This is similar to comparing two human players by 
categorizing their play in two areas: 

technical skill—precision in executing shots; and 
level of strategic play—how far ahead in the game 

•
•

the player looks, and how the player controls the cue 
ball position for the next shot.

We examined numerous combinations of tree-scor-
ing variations—Monte Carlo, probabilistic, or success-
weighted—and evaluation-function variations: average, 
maximum, or weighted. Within each tournament, the 
players with common search algorithm/evaluation func-
tions (but varying search depth) played 200-game matches 
against one another and against the greedy player in a 
round-robin format. The winning player of each game 
received a total of 10 points, and the losing player received 
one point for each pocketed ball of its color group (stripes 
or solids), for a maximum of seven points. The match 
score was the sum of the game scores.

Results. Table 1 summarizes the results from these 
experiments. Players are ranked by their overall perfor-
mance by averaging the percentage of games won, points 
scored, point differential, miss rate, and percentage of 
shots resulting in a ball-in-hand. The percentage of shots 
resulting in a BIH indicates not only how often a player 
fouled, but more importantly how often it left itself with 
no shot. The greedy player was more heavily penalized 
by this setting because it never considered the table state 
resulting from its chosen shot.

In the zero-noise tournament, the deeper-searching 
players consistently outplayed their shallower-searching 
competitors. For a given search type/evaluation function 
variant, the depth 2 player always defeated the greedy 
player easily and then defeated the depth 1 player in 
turn. The greedy player was defeated in all matches in 
the zero-noise tournament, winning at best 16.5 percent 
of the games in its match against one player. Against the 
greedy player, all of the depth 2 players scored more wins 
with a higher point differential than the corresponding 
depth 1 player.

Look-ahead. Positional play in the form of look-ahead 
is clearly an important consideration in pool. Choosing 
the easiest shot, or the shot with the highest probability 

Table 1. Summary across search depths for zero-, low-, and high-noise tournaments.

	 	 	 	 	 Average	 Average	

	 	 Average wins	 Average points	 Average point	 misses	 ball-in-hand	

Noise	 Player	 (percent)	 scored	 differential	 (percent)	 (percent)

Zero	 Greedy	 9.9	 771.6	 –1,093.3	 0.0	 10.3 
	 All depth 1	 61.1	 1,390.8	 278.4	 0.0	 2.5 
	 All depth 2	 79.9	 1,622.5	 814.9	 0.0	 2.5
Low	 Greedy	 19.9	 963.1	 –791.0	 6.3	 12.0 
	 All depth 1	 62.7	 1,458.8	 323.9	 2.6	 3.6 
	 All depth 2	 67.4	 1,523.9	 467.1	 1.6	 3.4
High	 Greedy	 36.5	 1,301.7	 –314.6	 11.8	 14.3 
	 All depth 1	 54.8	 1,484.4	 114.2	 8.9	 10.4 
	 All depth 2	 58.7	 1,519.9	 200.4	 9.3	 9.0
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of success, doesn’t result in a competitive player; plan-
ning strategically using look-ahead does. These results 
mirror the expectation for human players similarly char-
acterized by technical skill and level of strategic reason-
ing. Players are always limited by their technical skill, 
regardless of how strategically they plan shots. However, 
for sufficiently skilled players, the benefits of strategic 
reasoning and cue-ball placement in the form of look-
ahead always dominate over less strategic play. 

While these experiments have evaluated look-ahead 
only to a depth of 2, the benefits of look-ahead should 
continue to be apparent for search depths up to 8, at 
which point all game tree branches will have terminated, 
with all balls sunk and the game completed. In practice, 
expanding the game tree to greater depths can be quite 
time expensive, and so tournament competitors have 
restricted their searches to depths of 2 or 3.

Advantages of Machine Play
In many ways, pool is an ideal game for automation. 

A great deal of human pool instruction and practice is 
oriented toward establishing an accurate and repeatable 
stroke. Machines routinely outperform humans at posi-
tioning accuracy and repeatability, and they function 
consistently, without the performance-degrading effects 
of muscle fatigue. They also aren’t susceptible to psy-
chological pressure, a significant source of variation and 
failure in human play.

In addition, a machine like Deep Green can sense the 
balls’ absolute metric locations in the table coordinate 
reference frame. Humans can ascertain the balls’ geo-
metric arrangement based on their relative positions on 
the table, allowing them to plan and execute challenging 
shots, but in certain situations even skilled humans have 
difficulty perceiving the correct angles. For example, shots 
that involve multiple banks are inherently difficult to per-
ceive, and humans often use inexact systems based on 
table landmarks (diamonds) to augment their perception. 
In contrast, the machine resolves the metric location of 
all balls and table elements such as rails and pockets. This 
allows for more exact geometric planning, and enhances 
the machine’s ability to predict a shot’s outcome.

Another advantage of the machine is its computational 
simulation of the table’s physics. Most human players 
rely on an intuitive understanding of this aspect of the 
game. Typically with little or no formal knowledge of 
physics, they develop heuristics to predict the subsequent 
table state that results from the multiple interactions of 
any particular shot. While often useful, these heuris-
tics have limited fidelity. In contrast, the machine has 
an executable physics model and, so long as a handful 
of parameters have been estimated through calibration, 
can use a physics simulator to predict the resulting table 
state both accurately and efficiently.

Moreover, the cue end-effector provides precise con-
trol of stroke speed. The electromagnetic linear actua-

tor responsible for the forward motion of Deep Green’s 
stroke has a dedicated digital control unit that can be 
commanded in either position or velocity modes. The 
cue’s speed can range from almost stationary to approxi-
mately 3 m/s, with an average error of approximately 0.1 
percent. In contrast, humans tend to strike with one of 
six speeds: slow, medium-slow, medium, medium-fast, 
fast, or break. The added graduation in controlling cue 
speed translates to an increased ability to place the cue 
ball and predict and control the table state.

Once the mechanics of placing a shot have been mas-
tered, pool becomes a strategic game, and here too the 
machine has a potential advantage. The essence of pool 
strategy is the ability to look ahead and predict the table’s 
state following a potential shot or series of potential 
shots. This same capability lets computers outperform 
people at chess and other games recently believed to be 
only within the realm of human mastery.

Need for intelligence
The Deep Green project has inspired polar opposite 

responses on the degree of difficulty required to attain our 
goal. Some people who are familiar with technology but 
not with pool have regarded it as a straightforward task, 
requiring only standard robotic techniques to provide a 
solution. In contrast, proficient players who have no spe-
cial relationship with technology tend to argue that pool is 
a distinctly human activity, requiring human intelligence 
and skill, and that automating it is impossible. 

Our view lies somewhere between these two extremes. 
We believe that developing a robotic system to play pool 
competitively against a proficient human opponent is 
achievable. The technical problems are both interesting and 
sufficiently challenging to motivate advanced research, but 
not so difficult as to evade a meaningful solution.

Another question that Deep Green raises is whether 
computational intelligence is necessary for robotic pool. 
Isn’t an accurate positioning system and simple shot 
planning based purely on geometry sufficient? There are 
two answers to this question. First, accurate positioning 
of a standard gantry robot is itself a challenging goal 
requiring sensor-based methods for calibration and cor-
rection. Second, even if perfectly accurate positioning 
were possible, it’s still advantageous to play strategically 
and plan ahead a number of shots, as evidenced by our 
experiments with zero-noise tournaments.

D eep Green currently plays at a better-than-ama-
teur level, planning and executing difficult combi-
nation and rail shots from across the table. It has 

pocketed runs of four consecutive balls, and it’s only a 
matter of time before it can consistently run the table. 

Several research challenges must be addressed to advance 
the system further. The most difficult will emerge in com-
peting against proficient human opponents. Humans are 
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crafty competitors, able to efficiently recognize and exploit 
weaknesses in their opponents. To play at a competitive 
level, Deep Green must incorporate insights from machine-
learning and opponent-modeling techniques. ■
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