
C O V E R F E A T U R E

46	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00 © 2008 IEEE

Toward a
Competitive
Pool-Playing Robot

F
rom behind a closed door in a university cam-
pus hallway comes the distinctive clacking
sound of a pool game in progress. This isn’t a
student lounge, but rather a laboratory where
we’re developing a vision-based, intelligent

robotic system to play competitive pool. Named Deep
Green, the system currently shoots at a better-than-ama-
teur level, and our goal is to advance the system to be able
to challenge a proficient human opponent, ultimately at
a championship level.

Pool—by which we loosely refer to all cue sports,
including billiards, carom, and snooker—is somewhat
misunderstood, more likely to evoke images of shifty
characters in smoky bars than advanced robotics. It
evolved in the royal courts of medieval Europe as an
indoor version of croquet. Today, pool is enjoying a
resurgence of popularity worldwide. Variations are
played in almost every country, and pool was recognized
as a demonstration sport in the 1998 Nagano Olym-
pics. According to a 2005 survey,1 more than 35 million
people played pool that year in the US alone, and pool
ranked as the eighth most popular participation sport,
just after cycling and fishing.

The first attempt to automate pool was the Snooker
Machine developed at the University of Bristol in the late
1980s,2 which culminated with a televised game on BBC’s
science program QED.3 Since then, researchers have

developed a number of pool-playing robotic systems4-6 as
well as a training system that has a computer vision com-
ponent but doesn’t involve robotic actuation.7,8

Deep Green
As Figure 1 shows, Deep Green is centered on a

3-degree-of-freedom (DOF) industrial gantry robot,
which is mounted to the ceiling to avoid impeding human
access to the table. A digital camera, the global vision
system (GVS), is attached to the ceiling aiming down
toward the table, accompanied by an array of directional
lights. Attached to the gantry’s vertical post is a 3-DOF
spherical robotic wrist that, combined with the gantry’s
linear motion, affords the robot complete reachability
over the workspace.

The end-effector, illustrated in Figure 2, includes two
distinct cue devices, one based on a linear electromag-
netic motor and the other actuated pneumatically. The
electromagnetic cue can be finely controlled to strike up
to a velocity of 3 meters per second, which is sufficient for
normal play, whereas the pneumatic cue is used solely for
power breaks and strikes at 12 m/s. A small eye-in-hand
camera, the local vision system (LVS), is also attached to
the end-effector, as is a pick-and-place vacuum tool for
ball-in-hand conditions and automatic racking.

The table itself is a standard 4-foot × 8-foot coin-oper-
ated pool table, and all devices are connected to a single

Deep Green is a vision-based, intelligent robotic system that currently shoots pool at a

better-than-amateur level, with the ultimate goal of challenging a proficient human

opponent at a championship level.

Michael Greenspan, Joseph Lam, Marc Godard, Imran Zaidi,
and Sam Jordan, Queen’s University

Will Leckie, Nortel

Ken Anderson, Larus Technologies

Donna Dupuis, University of British Columbia

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

	 January 2008� 47

PC. While the system has been designed to play
the popular game of 8 Ball, with slight modifica-
tions it could play any other variation of pool.
Figure 3 shows a number of example shots.

ROBOTICS
Rather than build our own hardware, we

based Deep Green on standard commercially
available, albeit customized, components. This
makes the system relatively inexpensive and
quick to deploy, and it allowed us to focus our
effort on the computational challenges.

Camera calibration
The system’s robotic aspects rely primarily on

computer vision. Before using the cameras, we
had to calibrate them so that they could accu-
rately determine the ball locations within the
table’s metric coordinate reference frame. Using
standard techniques, we determined the cam-
eras’ intrinsic parameters, including factors to
correct for the radial distortion inherent to optical sys-
tems. It was also necessary to rectify the table plane to
compensate for perspective distortions that result from
the GVS retinal plane not being aligned exactly parallel
to the table surface, which is difficult to achieve manu-
ally to the desired accuracy.

The retinal plane and the table are related by a trans-
formation known as a homography, a mapping between
two planes. The standard technique for determining a
homography involves extracting a minimum of four cor-
responding point locations between a planar pattern and
its image. This technique is awkward to apply in Deep
Green as the pattern must be large (the table’s size) as
well as very flat and accurate.

Alternatively, we exploit an invariant property of the
projective space that uses a simple target comprising
perpendicular lines, such as a large carpenter’s square.
This technique lets us integrate measurements taken at
various positions on the table into a single homography,
which we estimate up to an affinity. With a few addi-
tional simple measurements, we can then recover the
remaining rotation and scale parameters that map the
image pixels to metric locations on the table surface.

Ball localization and identification
At runtime, Deep Green acquires a GVS image when

the balls come to rest and unwarps it to remove the radial
and perspective distortions. It then compares this image
with a set of statistics—pixel means and variances—
acquired from a set of approximately 30 background
images of the table, without any balls present. For each
pixel, if the difference between the foreground and back-
ground pixel values exceeds some threshold value of the
background standard deviation, the system judges that
pixel to be foreground, that is, possibly a ball.

Because this filter passes significant noise, the system
applies a connected-components algorithm and only
admits those regions large enough to be valid balls. It
then processes these ball regions using circle-extraction
and best-fit routines, leading to an accurate estimate of
each ball’s center location.

Once Deep Green has accurately identified the ball
locations, it sends the circular subregions defining each
ball to a color-indexing routine to determine the ball
identities. It must know the exact identity (number) of
each ball, as the formal rules for 8 Ball require nominat-
ing a ball and pocket for each shot. Offline, the system
forms a 2D histogram in normalized RGB space for each
of the 16 ball types from a collection of images of each
ball, taken at different aspects and at various locations
on the table. At runtime, it compares the color space his-
togram of each ball region with this database and uses a
histogram similarity metric to classify the ball.

Despite strong similarities between the colors of differ-
ent ball types, and reuse of colors among the stripes and

Figure 1. Deep Green robotic pool-playing system. The system is centered
on a 3-degree-of-freedom gantry robot mounted to the ceiling to avoid
impeding human access to the table.

Figure 2. End-effector components.

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

48	 Computer

C O V E R F E A T U R E

solids, the color-indexing method can reliably determine
each ball’s identity. Once the system has accurately local-
ized and identified each ball, it can simulate the table
state for shot planning.

Robot calibration
The challenge in using a standard gantry platform is its

limited accuracy, as industrial robotics tend to be highly
precise and repeatable but not terribly accurate. While
it’s possible to design a gantry robot with fine-grained
accuracy, such a device would be expensive, delicate,
and unlikely to maintain its accuracy while absorbing
the impacts required to place shots. A more reasonable
approach is to demand less accuracy from the primary
positioning device and rely upon the vision system for
calibration and correction.

One calibration technique involved both the LVS and
GVS cameras.9 We repeatedly positioned the robot over
a series of circular patterns placed on the table surface.
We then used the correspondence between the robot
joint encoder values and the centers of the extracted cir-
cles within the GVS image to determine the functional
relationship between the robot coordinate frame and the
table plane. This technique reduced robot positioning

error from the order of centimeters to within 0.6 mm on
average, with a standard deviation of 0.3 mm.

Eye-in-hand visual servoing
While robot calibration rendered an improvement, a

positioning accuracy of 0.6 mm is insufficient to success-
fully pot many long shots. It may be possible to further
refine our calibration technique, successively unraveling
the robot’s many mysterious nonlinearities. However,
the likely result of such an effort would be a very brittle
system—any change in the system parameters, due to
aging or other extrinsic conditions such as vibrations or
temperature, would require a tedious recalibration.

To improve positioning accuracy, we have developed
an eye-in-hand visual-servoing system in which the LVS
camera is mounted on the end-effector with its optical
axis pointing roughly along the direction of the cue.
The LVS uses the known ball locations determined by
the GVS as visual landmarks to detect and compensate
for positioning errors accumulated during the gantry’s
coarse motion.

LVS correction. Consider the nearly perfect straight shot
illustrated in Figure 4. In this GVS image, the inscribed
line is defined by the extracted center locations of the

Figure 3. Example shots. (a) 9 ball in the side pocket—composite of three images. (b) Combination shot: 4 ball in the corner pocket,
off of the 7 ball—composite of four images. (c) Combination shot: 6 ball in the corner pocket, off of the 1 ball—composite of four
images. (d) 5 ball in the corner pocket—time-exposure image.

(a) (b)

(c) (d)

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

	 January 2008� 49

cue and object balls prior to placing the shot. The
rendered circles are a sequence of three extracted
positions of the object ball, at times t0 to t2, once the
shot has been placed. The centers of these circles fall
on or close to the line, indicating that the robot was
positioned to make a very accurate straight shot.
The final resting positions of the cue and object balls
at time tf also fall on this line, further supporting the
shot’s quality.

From the LVS’s vantage, this is the ideal line. When
the robot is servoed to its shot position, as deter-
mined by the GVS, it accumulates error. By analyz-
ing the LVS image, and comparing the line connect-
ing the current cue and object ball centers with the
ideal line, the system can calculate transformations
that correct for the robot positioning error.10

Figure 5a shows an LVS image acquired after the
robot has been servoed to its shot position, using
only the information from the GVS. The current
(red) and ideal (green) lines aren’t aligned, indi-
cating positioning error. After the system executes the
automatic alignment procedure, the current line overlaps
almost exactly with the ideal line, as shown in Figure
5b, and the shot will therefore be very close to a perfect
straight shot.

Alignment methods. We have developed two different
methods to align the robot position with the LVS ideal
line.10 The simpler one is iterative and based entirely on
2D LVS image data. The other method uses knowledge of
the 3D rigid transformation between the robot wrist coor-
dinate reference frame and the LVS optical frame. This
transformation, known as the tool control frame (TCF)
matrix, is determined offline in a calibration stage.

Figure 6 plots the result of an experiment designed to
characterize the performance of these two methods. A
total of 90 straight shots were executed. Thirty of these
shots used only information from the GVS and robot
calibration, 30 more applied alignment using the image-
based method, and the final 30 used the position-based
method. We calculated the angular error of each shot by
extracting the object-ball center locations at a number
of (at least two) positions along their trajectories using
the GVS and comparing the angle of this line with the
line defined by the cue and object balls prior to placing
the shot (similar to Figure 4).

We plotted the angular errors for each of the 3
sets of 30 shots in ascending order. Alignment using
either method significantly reduced the angular error.
Without alignment, the mean absolute error was
1.8 degrees. With alignment, the error was reduced
by more than two thirds, to 0.51 degrees and 0.56
degrees for the image- and position-based methods,
respectively. While the accuracy is similar for both
alignment methods, the position-based method is
approximately 40 percent faster. Once the straight
shot is aligned accurately, the TCF matrix can be used

to further rotate and translate the cue around the cue-
ball center to execute a cut shot of any desired angle and
spin.

GAMING
For those who play pool only casually, skill is the limit-

ing factor, and sinking the current ball is usually the sole
concern. For more advanced players, however, strategy

Figure 4. Straight shot. Intermediate object ball locations fall on a line
defined by initial cue and object ball locations.

Figure 5. LVS correction. (a) Current (red) and ideal (green) lines
before alignment. (b) After alignment, current and ideal lines
overlap.

(b)

(a)

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

50	 Computer

C O V E R F E A T U R E

becomes a key element of the game, and professionals are
known to plan five or more shots ahead for a given table
state. For a robotic system to play competitively, it must
therefore strategize computationally, which involves both
predicting and planning future table states. This requires
the interplay of physics simulation and search.

Physics simulation
To predict the table state after a shot so that subse-

quent shots can be planned, an accurate physics model
is necessary. Spin is an essential element of the game,
and imparting spin on the cue ball by displacing and
angling the cue at impact is a technique used to control
the interaction and placement of balls following a shot.11
The physics model therefore involves conserving not only
linear but also angular momentum.

We have developed a physics simulator that predicts a
shot’s outcome from a derived physics model.12 Unlike
physics simulators that use the more common numerical
integration approach, our method operates in the con-
tinuous domain, predicting the times of pending events
such as collisions or transitions between motion states.
Our technique returns an exact analytic solution based
on a parameterization of the separation of two moving
balls as a function of time. The resulting equation is a
quartic polynomial that can be solved either iteratively
or in closed form to determine the collision time. A simi-
lar derivation exists for other events, such as ball-rail and
-pocket collisions and transitions from sliding-to-rolling
and rolling-to-stationary states.

Compared to integration, our approach is more

accurate, requiring no discrete time step; and
time efficient, requiring approximately two to three
orders of magnitude fewer computations per shot.

This added efficiency is especially important when the
physics simulator is used in expanding a game tree, as
many different shots—sometimes tens of thousands or
more—might need to be simulated prior to making a
decision.

Our physics simulator was the basis for the Compu-
tational 8 Ball Tournaments at the 10th and 11th Inter-
national Computer Olympiads.13 These tournaments let
teams develop different strategy engines and compete
using the common physics simulator.

One consideration in modeling the physics was shot
noise. When a human or robotic player takes a shot, error
in the cue’s position and velocity makes each shot noni-
deal. To make the simulation more realistic and the com-
petition more challenging, we added zero-mean random
Gaussian noise to each of the five shot parameters that
determine the outcome of a shot: two angles (θ,φ), two
offsets (a, b), and the striking speed V.14 The sigma values
of each distribution were empirically determined to cause
one missed shot every 10 shots on average, a success rate
similar to that of advanced human play. When planning
a shot for robotic play, a noise model based on the robot’s
calibrated positioning accuracy can be used to determine
the probability of a given shot’s success.

Search
With the physics simulator’s ability to predict a shot’s

outcome, it’s then necessary to evalu-
ate many possible shot sequences to
determine the best shot to place given
the current table state. Our approach
to this search is based on the mini-
max game tree used in games like
chess and checkers.15,16 While the
basic concept is the same as in chess,
one difference is that pool is played in
a continuous, rather than a discrete,
domain. The size of the search space
for any particular shot is therefore
truly infinite, rather than the huge
but finite search space of chess.

Another unique consideration in
pool is shot noise. In practice, each of
the five shot parameters has an element
of uncertainty that can be modeled as
a probability distribution. For this rea-
son, we have adapted the expectimax
search tree, which has been applied to
games like backgammon that have a
probabilistic component. Because pool
is played in a continuous domain, the
chosen tree search algorithm incorpo-

•
•

1 3 5 7 9 11 13 15 17 19 21 23 2725 29
0

1

2

3

4

5

6

7

Shots (in ascending order)

A
n

g
le

 e
rr

o
r (

d
eg

re
e)

Without LVS

LVS image-based

LVS position-based

Figure 6. Angular error in straight shot tests with LVS correction. Alignment reduced
the error by more than two thirds, to 0.51 degrees and 0.56 degrees for the image- and
position-based methods, respectively.

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

	 January 2008� 51

rates statistical sampling to account for uncertainty in shot
execution. The utility of a future table state is weighted by
its probability of occurrence, and the weighted utilities of
the children of each node are combined when considering
which path to traverse.

Empirical evaluation of strategic play
To explore the benefits of strategic play in pool, we

executed a set of experiments using this tree-search
framework.

Methodology. We simulated a series of 8 Ball tourna-
ments involving 19 competitors, all with identical shot-
generation algorithms. Eighteen of the competitors used
different tree-search depths, tree-scoring variations, and
evaluation-function variations; the 19th used a depth-
zero “greedy” shot-selection algorithm based solely on
the probability of the current shot’s success with no
regard for the resulting table state or future shots. This
greedy player had the same skill level as the other com-
petitors but thought like an amateur.

Three tournaments were played with three different
noise models reflecting the players’ technical skill level.
For the high-noise model, about 80 percent of balls were
sunk as planned; for low noise, about 90 percent; and for
zero noise, all shots were executed exactly as planned. All
players in each tournament used the same noise model and
search algorithm. Each tournament therefore isolated per-
formance as a function of tree-search depth and evaluation-
function variation. A search depth of 1, for example, con-
siders not only the current shot but also all shots resulting
from the current shot. The various scoring and evaluation
functions differed in how they rated a leaf node’s utility as
well as in how they combined the information from child
nodes in propagating back up the tree.

This is similar to comparing two human players by
categorizing their play in two areas:

technical skill—precision in executing shots; and
level of strategic play—how far ahead in the game

•
•

the player looks, and how the player controls the cue
ball position for the next shot.

We examined numerous combinations of tree-scor-
ing variations—Monte Carlo, probabilistic, or success-
weighted—and evaluation-function variations: average,
maximum, or weighted. Within each tournament, the
players with common search algorithm/evaluation func-
tions (but varying search depth) played 200-game matches
against one another and against the greedy player in a
round-robin format. The winning player of each game
received a total of 10 points, and the losing player received
one point for each pocketed ball of its color group (stripes
or solids), for a maximum of seven points. The match
score was the sum of the game scores.

Results. Table 1 summarizes the results from these
experiments. Players are ranked by their overall perfor-
mance by averaging the percentage of games won, points
scored, point differential, miss rate, and percentage of
shots resulting in a ball-in-hand. The percentage of shots
resulting in a BIH indicates not only how often a player
fouled, but more importantly how often it left itself with
no shot. The greedy player was more heavily penalized
by this setting because it never considered the table state
resulting from its chosen shot.

In the zero-noise tournament, the deeper-searching
players consistently outplayed their shallower-searching
competitors. For a given search type/evaluation function
variant, the depth 2 player always defeated the greedy
player easily and then defeated the depth 1 player in
turn. The greedy player was defeated in all matches in
the zero-noise tournament, winning at best 16.5 percent
of the games in its match against one player. Against the
greedy player, all of the depth 2 players scored more wins
with a higher point differential than the corresponding
depth 1 player.

Look-ahead. Positional play in the form of look-ahead
is clearly an important consideration in pool. Choosing
the easiest shot, or the shot with the highest probability

Table 1. Summary across search depths for zero-, low-, and high-noise tournaments.

	 	 	 	 	 Average	 Average	

	 	 Average wins	 Average points	 Average point	 misses	 ball-in-hand	

Noise	 Player	 (percent)	 scored	 differential	 (percent)	 (percent)

Zero	 Greedy	 9.9	 771.6	 –1,093.3	 0.0	 10.3
	 All depth 1	 61.1	 1,390.8	 278.4	 0.0	 2.5
	 All depth 2	 79.9	 1,622.5	 814.9	 0.0	 2.5
Low	 Greedy	 19.9	 963.1	 –791.0	 6.3	 12.0
	 All depth 1	 62.7	 1,458.8	 323.9	 2.6	 3.6
	 All depth 2	 67.4	 1,523.9	 467.1	 1.6	 3.4
High	 Greedy	 36.5	 1,301.7	 –314.6	 11.8	 14.3
	 All depth 1	 54.8	 1,484.4	 114.2	 8.9	 10.4
	 All depth 2	 58.7	 1,519.9	 200.4	 9.3	 9.0

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

52	 Computer

C O V E R F E A T U R E

of success, doesn’t result in a competitive player; plan-
ning strategically using look-ahead does. These results
mirror the expectation for human players similarly char-
acterized by technical skill and level of strategic reason-
ing. Players are always limited by their technical skill,
regardless of how strategically they plan shots. However,
for sufficiently skilled players, the benefits of strategic
reasoning and cue-ball placement in the form of look-
ahead always dominate over less strategic play.

While these experiments have evaluated look-ahead
only to a depth of 2, the benefits of look-ahead should
continue to be apparent for search depths up to 8, at
which point all game tree branches will have terminated,
with all balls sunk and the game completed. In practice,
expanding the game tree to greater depths can be quite
time expensive, and so tournament competitors have
restricted their searches to depths of 2 or 3.

Advantages of Machine Play
In many ways, pool is an ideal game for automation.

A great deal of human pool instruction and practice is
oriented toward establishing an accurate and repeatable
stroke. Machines routinely outperform humans at posi-
tioning accuracy and repeatability, and they function
consistently, without the performance-degrading effects
of muscle fatigue. They also aren’t susceptible to psy-
chological pressure, a significant source of variation and
failure in human play.

In addition, a machine like Deep Green can sense the
balls’ absolute metric locations in the table coordinate
reference frame. Humans can ascertain the balls’ geo-
metric arrangement based on their relative positions on
the table, allowing them to plan and execute challenging
shots, but in certain situations even skilled humans have
difficulty perceiving the correct angles. For example, shots
that involve multiple banks are inherently difficult to per-
ceive, and humans often use inexact systems based on
table landmarks (diamonds) to augment their perception.
In contrast, the machine resolves the metric location of
all balls and table elements such as rails and pockets. This
allows for more exact geometric planning, and enhances
the machine’s ability to predict a shot’s outcome.

Another advantage of the machine is its computational
simulation of the table’s physics. Most human players
rely on an intuitive understanding of this aspect of the
game. Typically with little or no formal knowledge of
physics, they develop heuristics to predict the subsequent
table state that results from the multiple interactions of
any particular shot. While often useful, these heuris-
tics have limited fidelity. In contrast, the machine has
an executable physics model and, so long as a handful
of parameters have been estimated through calibration,
can use a physics simulator to predict the resulting table
state both accurately and efficiently.

Moreover, the cue end-effector provides precise con-
trol of stroke speed. The electromagnetic linear actua-

tor responsible for the forward motion of Deep Green’s
stroke has a dedicated digital control unit that can be
commanded in either position or velocity modes. The
cue’s speed can range from almost stationary to approxi-
mately 3 m/s, with an average error of approximately 0.1
percent. In contrast, humans tend to strike with one of
six speeds: slow, medium-slow, medium, medium-fast,
fast, or break. The added graduation in controlling cue
speed translates to an increased ability to place the cue
ball and predict and control the table state.

Once the mechanics of placing a shot have been mas-
tered, pool becomes a strategic game, and here too the
machine has a potential advantage. The essence of pool
strategy is the ability to look ahead and predict the table’s
state following a potential shot or series of potential
shots. This same capability lets computers outperform
people at chess and other games recently believed to be
only within the realm of human mastery.

Need for intelligence
The Deep Green project has inspired polar opposite

responses on the degree of difficulty required to attain our
goal. Some people who are familiar with technology but
not with pool have regarded it as a straightforward task,
requiring only standard robotic techniques to provide a
solution. In contrast, proficient players who have no spe-
cial relationship with technology tend to argue that pool is
a distinctly human activity, requiring human intelligence
and skill, and that automating it is impossible.

Our view lies somewhere between these two extremes.
We believe that developing a robotic system to play pool
competitively against a proficient human opponent is
achievable. The technical problems are both interesting and
sufficiently challenging to motivate advanced research, but
not so difficult as to evade a meaningful solution.

Another question that Deep Green raises is whether
computational intelligence is necessary for robotic pool.
Isn’t an accurate positioning system and simple shot
planning based purely on geometry sufficient? There are
two answers to this question. First, accurate positioning
of a standard gantry robot is itself a challenging goal
requiring sensor-based methods for calibration and cor-
rection. Second, even if perfectly accurate positioning
were possible, it’s still advantageous to play strategically
and plan ahead a number of shots, as evidenced by our
experiments with zero-noise tournaments.

D eep Green currently plays at a better-than-ama-
teur level, planning and executing difficult combi-
nation and rail shots from across the table. It has

pocketed runs of four consecutive balls, and it’s only a
matter of time before it can consistently run the table.

Several research challenges must be addressed to advance
the system further. The most difficult will emerge in com-
peting against proficient human opponents. Humans are

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

	 January 2008� 53

crafty competitors, able to efficiently recognize and exploit
weaknesses in their opponents. To play at a competitive
level, Deep Green must incorporate insights from machine-
learning and opponent-modeling techniques. ■

Acknowledgments
The authors thank Precarn Inc., the Institute for Robot-

ics and Intelligent Systems, the Canada Foundation for
Innovation, and the Natural Sciences and Engineering
Research Council of Canada for their financial support,
and Elisha Hardwick for her photographic work. They
also thank the many students who have contributed long
hours to the development of the Deep Green system.

References
	1. 	Sporting Goods Manufacturing Assoc., State of the Industry

Report, 2005.
	2.	 S.W.S. Chang, “Automating Skills Using a Robot Snooker Player,”

doctoral dissertation, Univ. of Bristol, Bristol, UK, 1994.
	3.	 R. Popper, “Bring Back the Snooker-Playing Robot!,” The

Guardian, 7 Aug. 2007, p. 3.
	4.	 M.E. Alian et al., “Roboshark: A Gantry Pool Player Robot,”

Proc. 35th Int’l Symp. Robotics (ISR 04), 2004; www.cs.sfu.
ca/~psabzmey/personal/publ/papers/alian_roboshark_isr04.
pdf.

	5.	 S.C. Chua et al., “Performance Evaluation of Fuzzy-Based
Decision System for Pool,” Applied Soft Computing, Jan.
2007, pp. 411-424.

	6.	 Z.M. Lin, J.S. Yang, and C.Y. Yang, “Grey Decision-Making for
a Billiard Robot,” Proc. 2004 IEEE Int’l Conf. Systems, Man
and Cybernetics, vol. 6, IEEE Press, 2004, pp. 5350-5355.

	 7.	 L.B. Larsen, M.D. Jensen, and W.K. Vodzi, “Multimodal
User Interaction in an Automatic Pool Trainer,” Proc. 4th
IEEE Int’l Conf. Multimodal Interfaces (ICMI 2002), IEEE
CS Press, 2002, pp. 361-366.

	8.	 H. Denman, N. Rea, and A. Kokaram, “Content-Based Anal-
ysis for Video from Snooker Broadcasts,” Computer Vision
and Image Understanding, Nov./Dec. 2003, pp. 176-195.

	 9.	 F. Long et al., “Robotic Pool: An Experiment in Automatic Pot-
ting,” Proc. 2004 IEEE/RSJ Int’l Conf. Intelligent Robots and
Systems (IROS 2004), vol. 3, IEEE Press, 2004, pp. 361-366.

	10.	J. Lam, “Eye-in-Hand Visual Servoing to Improve Accuracy
in Pool Robotics,” master’s thesis, Dept. Electrical and Com-
puter Eng., Queen’s Univ., Kingston, Canada, 2007.

	11.	D.G. Alciatore, The Illustrated Principles of Pool and Bil-
liards, Sterling, 2004.

12.	W. Leckie and M. Greenspan, “Pool Physics Simulation by
Event Prediction 2: Collisions,” Int’l Computer Games Assoc.
J., Mar. 2006, pp. 24-31.

13.	M. Greenspan, “Pickpocket Wins Pool Tournament,” Int’l
Computer Games Assoc. J., Sept. 2006, pp. 153-156.

	14.	W. Leckie and M. Greenspan, “Pool Physics Simulation by
Event Prediction 1: Motion Transitions,” Int’l Computer
Games Assoc. J., Dec. 2005, pp. 214-222.

15.	W. Leckie and M. Greenspan, “Monte-Carlo Methods in Pool
Strategy Game Trees,” Proc. 5th Int’l Conf. Computers and
Games (CG 06), LNCS 4630, Springer, 2007.

	16. 	M. Smith, “PickPocket: A Computer Billiards Shark,” Artifi-
cial Intelligence, Nov. 2007, pp. 1069-1091.

Michael Greenspan is an associate professor in the Depart-
ment of Electrical and Computer Engineering and in the
School of Computing, Queen’s University, Kingston,
Ontario, Canada, and is spending the year as a visiting sci-
entist at the University of Coimbra, Portugal. His research
focuses on problems in computer vision and computer gam-
ing. Greenspan received a PhD in systems and computer
engineering from Carleton University, Ottawa. Contact
him at michael.greenspan@queensu.ca.

Joseph Lam is a PhD candidate in the Department of Elec-
trical and Computer Engineering at Queen’s University.
His research interests include computer vision and visual
servoing. Contact him at jctlam@gmail.com.

Marc Godard is a bachelor’s student in the School of
Computing, Queen’s University. His research interests
include computer vision, cognitive models, and prediction
algorithms. Contact him at 4mg12@qlink.queensu.ca.

Imran Zaidi is a bachelor’s student in the School of Com-
puting, Queen’s University. Contact him at 3aiz@qlink.
queensu.ca.

Sam Jordan is a master’s student in the Department of
Electrical and Computer Engineering at Queen’s Univer-
sity. His research interests include robotics, augmented
reality, and human-computer interaction. Contact him
at 3sj1@queensu.ca.

Will Leckie is an electro-optics hardware designer with
Nortel at its Carling Campus in Ottawa. His research
interests include robotics and artificial intelligence. Leckie
received a master’s degree in electrical and computer engi-
neering from Queen’s University. Contact him at will.
leckie@ece.queensu.ca.

Ken Anderson is a software engineer at Larus Technologies
in Ottawa. His research interests include robotics, single-
agent search, and computer games. Anderson received a
master’s degree in computing science from the University
of Alberta. Contact him at anderson@cs.ualberta.ca.

Donna Dupuis is a master’s student in the Department of
Electrical Engineering at the University of British Colum-
bia, Vancouver, British Columbia, Canada. Her research
interests include computer vision, robotics, and artificial
intelligence. Contact her at dupuisd@mech.ubc.ca.

Authorized licensed use limited to: Queens University. Downloaded on October 28, 2008 at 09:16 from IEEE Xplore. Restrictions apply.

