7/10/03
TP 4.2

## Center of percussion of the cue ball

from:
"The Illustrated Principles of Pool and Billiards"
www.engr.colostate.edu/pool
by David G. Alciatore, PhD, PE ("Dr. Dave")


Horizontal impulse between the cue stick and cue ball:

$$
\mathrm{F}^{\prime}
$$

Linear impulse equals the change in linear momentum:

$$
\begin{equation*}
\mathrm{F}^{\prime}=\mathrm{mv} \tag{1}
\end{equation*}
$$

Angular impulse equals the change in angular momentum:

$$
\begin{equation*}
\mathrm{F}^{\prime} \cdot \mathrm{a}=\mathrm{I} \cdot \mathrm{\omega} \tag{2}
\end{equation*}
$$

For impact at the center of percussion, the ball rolls without slipping immediately, so:

$$
\begin{equation*}
\mathrm{v}=\omega \cdot \mathrm{R} \tag{3}
\end{equation*}
$$

Using Equations 1 and 2 in Equation 3 gives:

$$
\begin{equation*}
\frac{F^{\prime}}{m}=\frac{F^{\prime} \cdot a \cdot R}{I} \tag{4}
\end{equation*}
$$

Using the equation for I above in Equation 4 gives:

$$
a=\frac{2}{5} R
$$

Therefore, the center of percussion is at:

$$
\mathrm{h}=\mathrm{R}+\mathrm{a}=\frac{7}{5} \cdot \mathrm{R}=\frac{7}{10} \cdot \mathrm{D}
$$

