7/11/03

TP 7.3

Ball-rail interaction and the effects on vertical plane spin

supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")

Ball properties:

$$
\underset{M}{m}:=6 \cdot \mathrm{oz} \quad \mathrm{D}:=2.25 \cdot \mathrm{in} \quad \underset{\mathrm{~m}}{\mathrm{R}}:=\frac{\mathrm{D}}{2} \quad \mathrm{I}_{\mathrm{o}}:=\frac{2}{5} \cdot \mathrm{~m} \cdot \mathrm{R}^{2}
$$

From the coefficient of restitution:

$$
\mathrm{v}^{\prime}=\mathrm{e} \cdot \mathrm{v}
$$

From linear impulse and momentum:

$$
\mathrm{F}^{\prime}=\mathrm{m}\left(\mathrm{v}^{\prime}+\mathrm{v}\right)=\mathrm{m} \cdot(1+\mathrm{e}) \cdot \mathrm{v}
$$

From angular impulse and momentum:

$$
\mu \cdot F^{\prime} \cdot R+F^{\prime} \cdot a=I_{0} \cdot\left(\omega^{\prime}+\omega\right)
$$

Solving for the ball angular speed after impact gives:

$$
\omega^{\prime}=\frac{\mathrm{F}^{\prime}}{\mathrm{I}_{\mathrm{o}^{\prime}}} \cdot(\mu \cdot \mathrm{R}+\mathrm{a})-\omega=\frac{\mathrm{m} \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{\frac{2}{5} \cdot \mathrm{~m} \cdot \mathrm{R}^{2}} \cdot(\mu \cdot \mathrm{R}+\mathrm{a})-\omega=\frac{5 \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{2 \cdot\left(\mu \cdot \mathrm{R}^{2}\right.} \cdot(\mu+\mathrm{R}+\mathrm{a})-\omega
$$

Typical values for different initial conditions

$$
\begin{array}{ll}
\mathrm{v}:=5 \cdot \frac{\mathrm{ft}}{\mathrm{sec}} \quad \quad \underset{\mathrm{~m}}{\mathrm{e}:=0.7} \quad \mu:=0.17 \quad \mathrm{a}:=0.08 \cdot \mathrm{R} \\
\mathrm{v}^{\prime}:=\mathrm{e} \cdot \mathrm{v} & \mathrm{v}^{\prime}=3.5 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

For rolling without slipping after impact:

$$
\omega^{\prime}:=\frac{\mathrm{v}^{\prime}}{\mathrm{R}} \quad \omega^{\prime}=37.333 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

For rolling without slipping at impact, $\omega=\mathrm{v} / \mathrm{R}$ giving:

$$
\begin{array}{ll}
\omega:=\frac{\mathrm{v}}{\mathrm{R}} & \omega=53.333 \frac{\mathrm{rad}}{\mathrm{~s}} \\
\stackrel{\omega}{m}^{\prime}:=\frac{5 \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{2 \cdot \mathrm{R}^{2}} \cdot(\mu \cdot \mathrm{R}+\mathrm{a})-\omega & \omega^{\prime}=3.333 \frac{\mathrm{rad}}{\mathrm{sec}}
\end{array} \quad \omega^{\prime} \text { close to 0 }
$$

For topspin at impact, $\omega>\mathrm{v} / \mathrm{R}$ giving:

$$
\begin{array}{ll}
\underset{\sim}{\omega}:=1.5 \cdot \frac{\mathrm{v}}{\mathrm{R}} & \omega=80 \frac{\mathrm{rad}}{\mathrm{~s}} \\
{\underset{\sim n}{\prime}}_{\prime}^{:=} & \frac{5 \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{2 \cdot \mathrm{R}^{2}} \cdot(\mu \cdot \mathrm{R}+\mathrm{a})-\omega
\end{array} \quad \omega^{\prime}=-23.333 \frac{\mathrm{rad}}{\mathrm{sec}} \quad 0<\left|\omega^{\prime}\right|<\frac{\mathrm{v}^{\prime}}{\mathrm{R}}
$$

For stun shot with $\omega=0$, there is no friction impulse and:

$$
\omega^{\prime}:=\frac{5 \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{2 \cdot \mathrm{R}^{2}} \cdot(\mathrm{a}) \quad \omega^{\prime}=18.133 \frac{\mathrm{rad}}{\mathrm{sec}} \quad 0<\omega^{\prime}<\frac{\mathrm{v}^{\prime}}{\mathrm{R}}
$$

For bottom spin at impact with $\omega<v / R$, the friction impulse is in the opposite direction and:

$$
\begin{array}{ll}
\underset{\sim}{\omega}:=-0.5 \cdot \frac{\mathrm{v}}{\mathrm{R}} & \omega=-26.667 \frac{\mathrm{rad}}{\mathrm{~s}} \\
\omega_{\mathrm{m}}^{\prime}:=\frac{5 \cdot(1+\mathrm{e}) \cdot \mathrm{v}}{2 \cdot \mathrm{R}^{2}} \cdot(-\mu \cdot \mathrm{R}+\mathrm{a})-\omega & \omega^{\prime}=6.267 \frac{\mathrm{rad}}{\mathrm{sec}}
\end{array} \quad \omega^{\prime} \text { close to } 0
$$

