TP A. 21

Comparison of bisector-point and double-angle-bisect draw systems
supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 11/29/05 last revision: 11/29/05

Note - the change in cue ball angle θ_{c} (e.g., see TP A.20) is related to the bisector angle θ according to:

$$
\theta_{\mathrm{c}}=180 \cdot \operatorname{deg}-2 \cdot \theta-\beta
$$

From the triangle formed by C, P, and the perpendicular from P to $O C$,

$$
\begin{aligned}
& \tan (\beta)=\frac{R \cdot \sin (\theta)}{d-R \cdot \cos (\theta)} \\
& \beta(\theta, d):=\operatorname{atan} 2(d-R \cdot \cos (\theta), R \cdot \sin (\theta))
\end{aligned}
$$

Applying the law of sines to triangle OGP gives:

$$
\begin{aligned}
& \frac{\sin [180 \cdot \operatorname{deg}-(\theta+\beta)]}{2 \cdot \mathrm{R}}=\frac{\sin (\phi+\beta)}{\mathrm{R}} \\
& \phi(\theta, \mathrm{~d}):=\operatorname{asin}\left(\frac{\sin (\theta+\beta(\theta, \mathrm{d}))}{2}\right)-\beta(\theta, \mathrm{d})
\end{aligned}
$$

The double-angle-bisect system (see Bob Jewett's October, 1995 BD article) predicts:

$$
\phi_{\mathrm{dab}}(\theta):=\frac{\theta}{2}
$$

Here's how the methods compare for two different CB-OB distances:

$$
\mathrm{d}_{1}:=1 \cdot \mathrm{ft} \quad \mathrm{~d}_{2}:=6 \cdot \mathrm{ft} \quad \theta:=0 \cdot \operatorname{deg} . .60 \cdot \mathrm{deg}
$$

So the two systems agree fairly well for small cut angle shots. There is more disagrement at bigger cut angles, especially when the distance between the $C B$ and $O B$ is large.

