TP A. 23

Ball-hit fraction vs. cut angle

from:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 7/9/06 last revision: 12/1/08

From the figure above, the following equations relate the dimensions x and d to the cut angle ϕ :

$$
\begin{gathered}
x+d=R \\
d=2 R \cdot \sin (\phi)
\end{gathered}
$$

The amount of overlap between the balls, projected in the aiming line direction is $R+x$, so the ball-hit fraction (f) is:

$$
\mathrm{f}=\frac{\text { overlap }}{\text { diameter }}=\frac{\mathrm{R}+\mathrm{x}}{2 \mathrm{R}}=\frac{2 \mathrm{R}-\mathrm{d}}{2 \mathrm{R}}=1-\sin (\phi)
$$

So the relationships between cut angle and ball-hit fraction are:

$$
\begin{aligned}
& \mathrm{f}(\phi):=1-\sin (\phi) \\
& \phi(\mathrm{f}):=\operatorname{asin}(1-\mathrm{f})
\end{aligned}
$$

Value ranges for the plots:

$$
\mathrm{fr}:=0,0.01 . .1 .0 \quad \phi r:=0 \cdot \operatorname{deg}, 1 \cdot \operatorname{deg} . .90 \cdot \operatorname{deg}
$$

Here are some common values:

