

<u>TP A.23</u> Ball-hit fraction vs. cut angle

from: "The Illustrated Principles of Pool and Billiards" <u>http://billiards.colostate.edu</u> by David G. Alciatore, PhD, PE ("Dr. Dave")

originally posted: 7/9/06 last revision: 12/1/08

From the figure above, the following equations relate the dimensions x and d to the cut angle ϕ :

$$x + d = R$$
$$d = 2R \cdot \sin(\phi)$$

The amount of overlap between the balls, projected in the aiming line direction is R+x, so the ball-hit fraction (f) is:

f =
$$\frac{\text{overlap}}{\text{diameter}}$$
 = $\frac{R + x}{2R}$ = $\frac{2R - d}{2R}$ = 1 - sin(ϕ)

So the relationships between cut angle and ball-hit fraction are:

$$f(\phi) := 1 - \sin(\phi)$$
$$\phi(f) := a\sin(1 - f)$$

Value ranges for the plots:

$$fr := 0, 0.01 ... 1.0$$
 $\phi r := 0 \cdot deg, 1 \cdot deg ... 90 \cdot deg$

