TP A. 24
technical proof

The effects of follow and draw on throw

supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")

originally posted: 8/29/2006 last revision: 8/29/2006

The cue ball (CB) strikes the object ball (OB) with velocity vin the y direction with cut angle ϕ. The OB gets thrown amount $\theta_{\text {throw }}$, and spin imparted about the t axis (due to draw or follow) causes the trajectory to curve a small amount $\Delta \theta$.

$$
\begin{array}{ll}
\mathrm{R}:=\frac{1.125 \cdot \mathrm{in}}{\mathrm{~m}} & \text { ball radius converted to meters } \\
\mathrm{v}:=\frac{2 \cdot \mathrm{mph}}{\frac{\mathrm{~m}}{\mathrm{~s}}} & \text { typical cue ball speed converted to meters/sec } \\
\omega_{\text {roll }}:=\frac{\mathrm{v}}{\mathrm{R}} & \\
& \text { natural-roll spin rate }
\end{array}
$$

From TP A.14, the OB post-impact velocity can be expressed with the following relations:

$$
\begin{aligned}
& \mu(\mathrm{v}):=9.951 \times 10^{-3}+0.108 \cdot \mathrm{e}^{-1.088 \cdot \mathrm{v}} \\
& \mathrm{v}_{\mathrm{rel}}\left(\mathrm{v}, \omega_{\mathrm{X}}, \omega_{\mathrm{Z}}, \phi\right):=\sqrt{\left(\mathrm{v} \cdot \sin (\phi)-\mathrm{R} \cdot \omega_{\mathrm{z}}\right)^{2}+\left(\mathrm{R} \cdot \omega_{\mathrm{x}} \cdot \cos (\phi)\right)^{2}} \\
& \mathrm{v}_{\mathrm{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right):=\min \binom{\frac{\mu\left(\mathrm{v}_{\mathrm{rel}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right)\right) \cdot \mathrm{v} \cdot \cos (\phi)}{\mathrm{v}_{\mathrm{rel}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right)}}{\frac{1}{7}} \cdot\left(\mathrm{v} \cdot \sin (\phi)-\mathrm{R} \cdot \omega_{\mathrm{z}}\right) \\
& \mathrm{v}_{\mathrm{OBn}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right):=\mathrm{v} \cdot \cos (\phi)
\end{aligned}
$$

The throw angle can then be expressed as:

$$
\theta_{\text {throw }}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right):=\operatorname{atan}\left(\frac{\mathrm{v}_{\mathrm{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)}{\mathrm{v}_{\mathrm{OBn}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)}\right)
$$

From Equation 10 in TP A.14, the friction impulse component in the tangential direction is:

$$
\widetilde{F}_{t}=m v_{O B_{t}}
$$

From Equation 5, the total frictional impulse is then:

$$
\widetilde{F}_{\mu}=\frac{\widetilde{F}_{t}}{e_{\mu_{t}}}
$$

and the friction impulse component in the vertical direction, using Equation 3, is:

$$
\widetilde{F}_{z}=\widetilde{F}_{\mu} e_{\mu_{z}}=\widetilde{F}_{t} \frac{e_{\mu_{z}}}{e_{\mu_{t}}}=\widetilde{F}_{t} \frac{v_{B_{z}}}{v_{B_{t}}}=m v_{O B_{t}} \frac{R \omega_{x} \cos (\phi)}{v \sin (\phi)-R \omega_{z}}
$$

This frictional impulse imparts spin to the OB about the t axis, which can be found from the following angular impulse-momentum equation:

$$
\begin{aligned}
& \omega_{O B_{t}}=-\frac{1}{I}\left(\widetilde{F}_{z} R\right)=-\frac{5}{2 R m} \widetilde{F}_{z}=\frac{-5 v_{O B_{t}} \omega_{x} \cos (\phi)}{2\left(v \sin (\phi)-R \omega_{z}\right)} \\
& \omega_{\mathrm{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right):=\frac{-5 \cdot \mathrm{v}_{\mathrm{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right) \cdot \omega_{\mathrm{x}} \cdot \cos (\phi)}{2 \cdot\left(\mathrm{v} \cdot \sin (\phi)-\mathrm{R} \cdot \omega_{\mathrm{z}}\right)}
\end{aligned}
$$

This induced spin curves the trajectory of the OB slightly with a masse type action.

From TP A.4, applying Equations 21 and 22 to the OB motion, the final (post curve) OB motion will have the following velocity components:

$$
\begin{aligned}
& \mathrm{v}_{\operatorname{OBtf}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right):=\frac{5}{7} \cdot \mathrm{v}_{\operatorname{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right) \\
& \mathrm{v}_{\operatorname{OBnf}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right):=\frac{1}{7} \cdot\left(5 \cdot \mathrm{v}_{\mathrm{OBn}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)-2 \cdot \mathrm{R} \cdot \omega_{\mathrm{OBt}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)\right)
\end{aligned}
$$

Therefore, the change in $O B$ angle due to curve caused by follow or draw is:

$$
\Delta \theta\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right):=\operatorname{atan}\left(\frac{\mathrm{v}_{\mathrm{OBtf}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)}{\mathrm{v}_{\operatorname{OBnf}}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)}\right)-\theta_{\text {throw }}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)
$$

Example values for a 1/2-ball hit: $\quad \phi:=30 \cdot \mathrm{deg}$

$$
\begin{array}{ll}
\text { stun shot: } & \omega_{\mathrm{x}}:=0 \quad \omega_{\mathrm{z}}:=0 \\
& \theta_{\text {throw }}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)=4.366 \mathrm{deg} \\
& \Delta \theta\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)=0
\end{array}
$$

A stun shot has the most throw, and there is no $O B$ curving.
draw shot:

$$
\begin{aligned}
& {\underset{\sim}{x v}}_{\omega}:=\omega_{\text {roll }} \quad \underbrace{\omega}_{\text {M }}:=0 \\
& \theta_{\text {throw }}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)=1.454 \mathrm{deg} \\
& \Delta \theta\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)=-0.061 \mathrm{deg}
\end{aligned}
$$

A draw shot has less throw than a stun shot, and the curve effect tends to decrease the throw, but only by an extremely small amount.
follow shot:

$$
\begin{aligned}
& \theta_{\text {throw }}\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{z}}, \phi\right)=1.454 \mathrm{deg} \\
& \Delta \theta\left(\mathrm{v}, \omega_{\mathrm{x}}, \omega_{\mathrm{Z}}, \phi\right)=0.067 \mathrm{deg}
\end{aligned}
$$

A follow shot has the same throw as a draw shot, and the curve effect tends to increase the throw, but only by an extremely small amount.

