TPA. 5

The effects of ball inelasticity and friction on the 90° rule
supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 2/6/2005 last revision: 3/19/2014

This technical proof looks at the effects of ball-to-ball coefficient of restitution (e) and friction (μ) on the 90 degree rule derived in TP 3.1.

(ϕ)
incoming speed components

NOTE: each ball is assumed to have equal mass (m)

Each ball has equal and opposite impulses in the normal (n) and tangential (t) directions given by:

$$
\hat{F}_{n}=\int F_{n} d t \quad \text { and } \quad \hat{F}_{t}=\int F_{t} d t
$$

The change in momentum of each ball in the n direction is equal to the normal impulse:

$$
\begin{equation*}
\hat{F}_{n}=m\left(v_{1 n}-v_{1 n}^{\prime}\right)=m\left(v_{2 n^{\prime}}\right) \tag{1}
\end{equation*}
$$

The change in momentum of each ball in the t direction is equal to the tangential impulse:

$$
\begin{equation*}
\hat{F}_{t}=m\left(v_{1 t}-v_{1 t}^{\prime}\right)=m\left(v_{2 t}^{\prime}\right) \tag{2}
\end{equation*}
$$

The speed of separation in the n direction is less than the speed of approach according to the coefficient of restitution (e):

$$
\begin{equation*}
v_{2 n}{ }^{\prime}-v_{1 n}^{\prime}=e\left(v_{1 n}\right) \tag{3}
\end{equation*}
$$

The initial speed components, from the figure above, are:

$$
\begin{align*}
& v_{1 t}=v_{1} \sin (\phi) \tag{4}\\
& v_{1 n}=v_{1} \cos (\phi) \tag{5}
\end{align*}
$$

where ϕ is the cut angle.

From Equation 1, we can write:

$$
\begin{equation*}
v_{2 n}{ }^{\prime}=v_{1 n}-v_{1 n}{ }^{\prime} \tag{6}
\end{equation*}
$$

Using this in Equation 3, with Equation 5, gives:

$$
\begin{equation*}
v_{1 n}^{\prime}=\frac{(1-e)}{2} v_{1 n}=\frac{(1-e) \cos (\phi)}{2} v_{1} \tag{7}
\end{equation*}
$$

Substituting this back into Equation 1 gives:

$$
\begin{equation*}
\hat{F}_{n}=\frac{(1+e)}{2} m v_{1 n}=\frac{(1+e) \cos (\phi)}{2} m v_{1} \tag{8}
\end{equation*}
$$

Using this in Equation 1, with Equation 5, gives:

$$
\begin{equation*}
v_{2 n}^{\prime}=\frac{(1+e)}{2} v_{1 n}=\frac{(1+e) \cos (\phi)}{2} v_{1} \tag{9}
\end{equation*}
$$

Now we know both post-impact normal speed components (Equations 7 and 9).

The impulse in the t direction cannot reverse the direction of the relative tangential speed and it cannot exceed that allowed by friction, so from TP A. 14 (Equation 15):

$$
\begin{equation*}
\hat{F}_{t}=\min \binom{\mu \hat{F}_{n}}{m v_{1 t}}=\min \binom{\left(\frac{\mu(1+e) \cos (\phi)}{2}\right)}{\frac{1}{7} \sin (\phi)} m v_{1} \tag{10}
\end{equation*}
$$

I want to thank Sorokin Alexander for pointing out an error in Equation 10 in the original version of this document. The equation is now more accurate; although, the results below are unchanged.

Using this in Equation 2, we can solve for the post-impact tangential speeds:

$$
\begin{gather*}
v_{2 t}^{\prime}=\min \binom{\left(\frac{\mu(1+e) \cos (\phi)}{2}\right)}{\frac{1}{7} \sin (\phi)} v_{1} \tag{11}\\
v_{1 t}^{\prime}=v_{1 t}-v_{2 t}^{\prime}=\left(\sin (\phi)-\min \left(\frac{\left(\frac{\mu(1+e) \cos (\phi)}{2}\right)}{\frac{1}{7} \sin (\phi)}\right)\right) v_{1} \tag{12}
\end{gather*}
$$

So now we can determine the direction of each ball after impact, along with the angle between their paths (see the "after impact" figure above):

$$
\begin{align*}
& \theta_{1}=\tan ^{-1}\left(\frac{v_{1 n}{ }^{\prime}}{v_{1 t^{\prime}}}\right)=\tan ^{-1}\left(\frac{(1-e) \cos (\phi)}{2 \sin (\phi)-\min \binom{\mu(1+e) \cos (\phi)}{\frac{2}{7} \sin (\phi)}}\right) \tag{13}\\
& \theta_{2}=\tan ^{-1}\left(\frac{v_{2 t^{\prime}}}{v_{2 n}{ }^{\prime}}\right)=\tan ^{-1}\left(\frac{\min \binom{\mu(1+e) \cos (\phi)}{\frac{2}{7} \sin (\phi)}}{(1+e) \cos (\phi)}\right) \tag{14}\\
& \theta=90^{\circ}-\theta_{1}-\theta_{2} \tag{15}
\end{align*}
$$

Now putting the equations in MathCAD form and entering typical data:

$$
\begin{aligned}
& e:=0.94 \quad \text { coefficient of restitution between balls } \\
& \mu:=0.06 \quad \text { average coefficient of friction between balls } \\
& \phi:=30 \cdot \operatorname{deg} \quad \text { half-ball hit }
\end{aligned}
$$

$$
\begin{align*}
& \theta_{2}(e, \mu, \phi):=\operatorname{angle}\left((1+e) \cdot \cos (\phi), \min \left(\left[\begin{array}{c}
{[\mu \cdot(1+e) \cdot \cos (\phi)} \\
\frac{2}{7} \cdot \sin (\phi)
\end{array}\right]\right)\right) \tag{fromEquation14}\\
& \theta(e, \mu, \phi):=90 \cdot \operatorname{deg}-\theta_{1}(e, \mu, \phi)-\theta_{2}(e, \mu, \phi) \\
& \text { (from Equation 15) }
\end{align*}
$$

With no inelasticity or friction:

$$
\theta_{1}(1,0, \phi)=0 \mathrm{deg} \quad \theta_{2}(1,0, \phi)=0 \mathrm{deg} \quad \theta(1,0, \phi)=90 \mathrm{deg}
$$

This is the 90 degree rule result presented in TP 3.1.

With inelasticity only:

$$
\theta_{1}(e, 0, \phi)=2.975 \mathrm{deg} \quad \theta_{2}(e, 0, \phi)=0 \mathrm{deg} \quad \theta(e, 0, \phi)=87.025 \mathrm{deg}
$$

inelasticity "shortens" the cue ball angle

With friction only:

$$
\theta_{1}(1, \mu, \phi)=0 \mathrm{deg} \quad \theta_{2}(1, \mu, \phi)=3.434 \mathrm{deg} \quad \theta(1, \mu, \phi)=86.566 \mathrm{deg}
$$

friction "shortens" the object ball angle (this is called "throw")

With inelasticity and friction:

$$
\theta_{1}(e, \mu, \phi)=3.307 \mathrm{deg} \quad \theta_{2}(e, \mu, \phi)=3.434 \mathrm{deg} \quad \theta(e, \mu, \phi)=83.259 \mathrm{deg}
$$

So the 90 degree rule is actually something less than the 90 degree rule. e and μ vary with shot speed and cut angle in practice; but in all cases, the actual angle between the ball paths will be less than 90 degrees.

