TP B. 15

Pocket geometry calculations

supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 7/12/2013 last revision: 7/12/2013

The pocket facing angle is usually specified as angle α.
The wedge angle of the cushion is given by:

$$
\begin{equation*}
\beta=180 \cdot \operatorname{deg}-\alpha \tag{1}
\end{equation*}
$$

The angle of the facing relative to the pocket centerline is:

$$
\begin{equation*}
\theta=\alpha-135 \cdot \mathrm{deg} \tag{2}
\end{equation*}
$$

These angles are also related by:

$$
\begin{equation*}
\beta=45 \cdot \operatorname{deg}-\theta \tag{3}
\end{equation*}
$$

From the triangle formed by angle θ, the length of the pocket facing is:

$$
\begin{equation*}
r=\frac{c}{\sin (\beta)} \tag{4}
\end{equation*}
$$

and the mouth-throat difference is related to this length according to:

$$
\begin{equation*}
\frac{(m-t)}{2}=r \cdot \sin (\theta) \tag{5}
\end{equation*}
$$

Substituting Equation 4 into Equation 5, gives:

$$
\begin{equation*}
\frac{(m-t)}{2 \cdot c} \cdot \sin (\beta)=\sin (\theta) \tag{6}
\end{equation*}
$$

But from Equation 3 and the angle-difference trig identity,

$$
\begin{equation*}
\sin (\beta)=\sin (45 \cdot \mathrm{deg}-\theta)=\sin (45 \cdot \mathrm{deg}) \cos (\theta)-\cos (45 \cdot \mathrm{deg}) \sin (\theta)=\frac{1}{\sqrt{2}} \cdot(\cos (\theta)-\sin (\theta)) \tag{7}
\end{equation*}
$$

Using Equation 7 in Equation 6 gives:

$$
\begin{equation*}
\frac{(\mathrm{m}-\mathrm{t})}{2 \cdot \sqrt{2} \cdot \mathrm{c}} \cdot(\cos (\theta)-\sin (\theta))=\sin (\theta) \tag{8}
\end{equation*}
$$

Rearranging gives:

$$
\begin{equation*}
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{1}{\left[1+\frac{2 \cdot \sqrt{2} \cdot c}{(m-t)}\right]} \tag{9}
\end{equation*}
$$

Therefore, from Equation 2 and 9, the facing angle can be found from the mouth-throat difference with:

$$
\begin{equation*}
\left.\alpha=135 \cdot \operatorname{deg}+\operatorname{atan}\left[\frac{1}{\left[1+\frac{2 \cdot \sqrt{2} \cdot c}{(m-t)}\right.}\right]\right] \tag{10}
\end{equation*}
$$

Here is an example of using Equation 10 to calculate the pocketing facing angle from pocket measurements:

$$
\begin{array}{cc}
\mathrm{m}:=4.5 \cdot \text { in } & t:=3.75 \cdot \text { in } \quad \mathrm{m}-\mathrm{t}=0.75 \text { in } \quad \underset{\mathrm{m}}{\mathrm{~m}}:=2 \cdot \text { in } \\
\alpha:=135 \cdot \operatorname{deg}+\operatorname{atan}\left[\frac{1}{\left[1+\frac{2 \cdot \sqrt{2} \cdot \mathrm{c}}{(m-t)}\right]}\right]
\end{array}
$$

For a given pocket facing angle, the mouth-throat difference (mt) can be found using Equations 1, 2, 4 and 5:

$$
\begin{gathered}
\underset{\sim}{\alpha}:=142 \cdot \operatorname{deg} \quad \underset{M}{c}:=2 \cdot \text { in } \\
m t:=2 \frac{c}{\sin (180 \cdot \operatorname{deg}-\alpha)} \cdot \sin (\alpha-135 \cdot \operatorname{deg})
\end{gathered}
$$

