TP B.22

How peak tip contact force and contact patch size vary with shot speed, and drop tests

supporting:
“The Illustrated Principles of Pool and Billiards”
http://billiards.colostate.edu
by Dr. Dave Alciatore, PhD, PE ("Dr. Dave")

originally posted: 5/19/2018 last revision: 5/19/2018

Mass of a pool ball and typical cue stick:

\[m_b := 6 \text{ oz} \quad m_s := 19 \text{ oz} \]

Typical tip-ball contact times for phenolic and leather tips with fast-speed shots, from the DBKcue link here:
http://billiards.colostate.edu/threads/cue_tip.html#contact

\[\Delta t_{\text{phenolic}} := 0.0008 \cdot s \quad \Delta t_{\text{leather}} := 0.0012 \cdot s \]

Typical coefficients of restitution (CORs) for a phenolic tip on a break cue and a typical leather tip on playing cue, from:
http://billiards.colostate.edu/threads/cue_tip.html#efficiency

\[e_{\text{phenolic}} := 0.85 \quad e_{\text{leather}} := 0.73 \]

Typical contact patch sizes for a fast-speed shot with phenolic and leather tips:

\[v_{\text{fast}} := 10 \cdot \text{mph} \quad cps_{\text{phenolic}} := 3 \cdot \text{mm} \quad cps_{\text{leather}} := 4 \cdot \text{mm} \]

From TP B.20, the peak force between the cue tip and CB during impact, for a given CB speed \(v_b \) and tip contact time \(\Delta t \) is:

\[F_{\text{peak}}(v_b, \Delta t) := \frac{2 \cdot m_b \cdot v_b}{\Delta t} \]

Hertz elastic contact-stress equations (e.g., from "Impact Mechanics" by Strong, pp.117-118, 2004) can be used to approximate how contact patch size (cps) varies with peak force (\(F \)) according to:

\[cps = \left(\frac{3 \cdot F \cdot E}{R} \right)^{\frac{1}{3}} = c \cdot F^{\frac{1}{3}} \]

where \(E \) depends on tip and CB material properties, \(R \) depends on the radii of curvature of the tip and CB, and \(c \) is the resulting constant.

Therefore, the approximate contact patch size can be related to CB speed and tip contact time according to:

\[cps(v_b, \Delta t, c) := c \left(\frac{2 \cdot m_b \cdot v_b}{\Delta t} \right)^{\frac{1}{3}} \]
And the Hertz constant c can be related to contact patch size according to:

$$c(v_b, \Delta t, \text{cps}) := \text{cps} \cdot \left(\frac{\Delta t}{2 \cdot m_b \cdot v_b}\right)^{\frac{1}{3}}$$

We can approximate the Hertz equation constant c for both phenolic and leather tips using the data above:

$$c_{\text{phenolic}} := c(v_{\text{fast}}, \Delta t_{\text{phenolic}}, \text{cps}_{\text{phenolic}}) = 0.242 \frac{\text{mm}}{N^{\frac{1}{3}}}$$

$$c_{\text{leather}} := c(v_{\text{fast}}, \Delta t_{\text{leather}}, \text{cps}_{\text{leather}}) = 0.37 \frac{\text{mm}}{N^{\frac{1}{3}}}$$

As a check to make sure these values are correct, we can see if the cps equation predicts the correct contact patch sizes:

$$\text{cps}(v_{\text{fast}}, \Delta t_{\text{phenolic}}, c_{\text{phenolic}}) = 3 \text{ mm}$$

$$\text{cps}(v_{\text{fast}}, \Delta t_{\text{leather}}, c_{\text{leather}}) = 4 \text{ mm}$$

Now we can look at how both peak contact force (in pounds) and contact patch size (in mm) vary with shot speed for both phenolic and leather tips:

$$v_b := 1 \cdot \text{mph}, 2 \cdot \text{mph} \ldots 30 \text{ mph}$$

As expected, the peak contact force increases with CB speed, and is greater for a phenolic tip as compared to a leather tip. With a powerful break (25 mph), the peak forces on both phenolic and leather tips are:

$$F_{\text{peak}}(25 \cdot \text{mph}, \Delta t_{\text{phenolic}}) = 1068 \text{ lbf}$$

$$F_{\text{peak}}(25 \cdot \text{mph}, \Delta t_{\text{leather}}) = 712 \text{ lbf}$$

$$F_{\text{peak}}(25 \cdot \text{mph}, \Delta t_{\text{phenolic}}) = 4753 \text{ N}$$

$$F_{\text{peak}}(25 \cdot \text{mph}, \Delta t_{\text{leather}}) = 3168 \text{ N}$$
As expected, the contact patch size increases with CB speed, and is larger for a leather tip as compared to a phenolic tip. With a powerful break (25 mph), the contact patch sizes for phenolic and leather tips are approximated to be:

\[
cps(v_b, \Delta t_{\text{phenolic}}, c_{\text{phenolic}}) = 4.1 \text{ mm}
\]

\[
cps(v_b, \Delta t_{\text{leather}}, c_{\text{leather}}) = 5.4 \text{ mm}
\]
One way to simulate cue-tip-CB impact is to drop a cue from different heights onto a heavy/solid/hard/flat/smooth surface (e.g., a big steel block). From conservation of energy, the cue speed \(v \) after falling height \(h \) is:

\[
v = \sqrt{2 \cdot g \cdot h}
\]

From impulse-momentum principles, if we want the impulse (and peak force) with a drop test to match the impulse (and peak force) of a CB hit, we can relate drop height \(h \) to CB speed \(v_b \) and drop rebound COR \(e \) with:

\[
m_b \cdot v_b = m_s \cdot (v + e \cdot v) = m_s \cdot \sqrt{2 \cdot g \cdot h \cdot (1 + e)}
\]

Solving for \(h \) gives us the required drop height to simulate different CB speeds:

\[
h(v_b, e) := \frac{1}{2} \frac{m_b \cdot v_b}{m_s \cdot (1 + e)}^2
\]

Here's a plot of how required drop height varies with simulated CB speed for both phenolic and leather tips:

As expected, a larger drop height is required to simulate faster CB speeds, and the drop height for a leather tip needs to be a little higher compared to a phenolic tip. With a powerful break (25 mph), the required drop heights for both phenolic and leather tips are approximately:

\[
h(25 \cdot mph, e_{\text{phenolic}}) = 0.61 \ ft \quad h(25 \cdot mph, e_{\text{phenolic}}) = 18.6 \ cm
\]

\[
h(25 \cdot mph, e_{\text{leather}}) = 0.7 \ ft \quad h(25 \cdot mph, e_{\text{leather}}) = 21.2 \ cm
\]