TP B. 27

Sliding Bank System Comparisons
supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 8/9/2023 last revision: 8/10/2023

for background and demonstrations see:

"NV L. 30 - SLIDING BANK SHOT DIAMOND SYSTEMS ... How to Aim Banks at Fast-Speed or Close-to-the-Cushion:" https://billiards.colostate.edu/normal-video/nv-l-30/

Measured Through-Diamond Bank Reference Lines:

\[\)| aim point on the banking rail: | aim $:=\left(\begin{array}{lllllll}.5 & 1 & 1.5 & 2 & 2.5 & 3\end{array}\right)^{\mathrm{T}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| where the cue crosses the opposite rail: | cue $:=\left(\begin{array}{lllllll}1.38 & 2.72 & 3.89 & 5.07 & 6.38 & 7.74\end{array}\right)^{\mathrm{T}}$ |

\]

1-More-Than-Twice Through-Diamond System:

$$
\text { one_more }(x):=2 \cdot x+1
$$

EckertAim Between $1 / 4$ and $1 / 2$ or Briesath Adding Thirds Through-Diamond Systems:

$$
\operatorname{thirds}(\mathrm{x}):=\frac{8}{3} \cdot \mathrm{x}
$$

Dr Dave Rail-Groove (across diamond) 1/3-of-a-Diamond-More-Than-Twice System:

$$
\begin{aligned}
& \text { diamond distance: } \mathrm{D}:=12.5 \quad \text { distance between diamond and rail groove lines (in diamonds): } \quad \mathrm{d}:=\frac{4.25}{\mathrm{D}} \\
& \text { measured width across table between rail grooves (in diamonds): } \quad \mathrm{w}:=\frac{48.25}{\mathrm{D}}
\end{aligned}
$$

rail-groove across-diamond point (a) based on through-diamond aim point (x):

$$
x(a):=a-\frac{a+\frac{1}{3}}{w} \cdot d \quad a(x):=\frac{d+3 \cdot w \cdot x}{3 \cdot w-3 \cdot d} \quad \text { one_third }(a):=2 \cdot a+\frac{1}{3}+\frac{a+\frac{1}{3}}{w} \cdot d
$$

Optimal System (measuring across from the diamonds in the rail grooves at a fraction (f) more than twice):

$$
\begin{aligned}
& \text { optimal factor (for best fit of measured data below): } \quad \mathrm{f}:=\frac{1}{5} \\
& \mathrm{x}_{\mathrm{opt}}(\mathrm{a}):=\mathrm{a}-\frac{(1+\mathrm{f}) \cdot \mathrm{a}}{\mathrm{w}} \cdot \mathrm{~d} \\
& a_{o p t}(x):=\frac{x}{1-\frac{d \cdot(1+f)}{w}} \\
& \operatorname{opt}(\mathrm{a}):=(2+\mathrm{f}) \cdot \mathrm{a}+\frac{(1+\mathrm{f}) \cdot \mathrm{a}}{\mathrm{w}} \cdot \mathrm{~d} \\
& \text { example banking rail rail groove across diamond numbers: } \\
& \operatorname{aim}^{\mathrm{T}}=\left(\begin{array}{llllll}
0.5 & 1 & 1.5 & 2 & 2.5 & 3
\end{array}\right) \\
& \text { corresponding cue crossing point in opposite rail groove: } \\
& (2+\mathrm{f}) \cdot \mathrm{aim}^{\mathrm{T}}=\left(\begin{array}{llllll}
1.1 & 2.2 & 3.3 & 4.4 & 5.5 & 6.6
\end{array}\right)
\end{aligned}
$$

OPTIMAL SYSTEM: twice plus 10% (or a tenth) of twice, measured in the rail grooves across from the diamonds

