TP B. 5

technical proof

Rolling CB, direct-hit hop and ball travel distances

supporting:
"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu
by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 1/30/2009 last revision: 1/30/2009

Typical speeds for a range of shots:

$$
\begin{gathered}
\mathrm{v}_{\text {touch }}:=1.5 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {slow }}:=3 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {medium_soft }}:=5 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {medium }}:=7 \cdot \mathrm{mph} \\
\mathrm{v}_{\text {medium_fast }}:=8 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {fast }}:=12 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {power }}:=20 \cdot \mathrm{mph}
\end{gathered}
$$

Rolling CB with square hit on OB (see details in TP A.5):

Normal impulse between the balls:

$$
\mathrm{F}_{\mathrm{n}}^{\prime}=\frac{\left(1+\mathrm{e}_{\mathrm{b}}\right)}{2} \cdot \mathrm{~m} \cdot \mathrm{v}
$$

Tangential impulse between the balls during impact (assuming slip):

$$
\mathrm{F}_{\mathrm{t}}^{\prime}=\mu_{\mathrm{b}} \cdot \mathrm{~F}_{\mathrm{n}}^{\prime}
$$

Vertical speed of $C B$ after impact, due to tangential friction force:

$$
\mathrm{v}_{\mathrm{z}}=\frac{1}{\mathrm{~m}} \cdot \mathrm{~F}_{\mathrm{t}}^{\prime}=\frac{\mu_{\mathrm{b}} \cdot\left(1+\mathrm{e}_{\mathrm{b}}\right) \cdot \mathrm{v}}{2}
$$

Loss of CB spin, which is the same as the gain in OB spin, due to the tangential friction force is:

$$
\Delta \omega=\frac{\mathrm{F}_{\mathrm{t}}^{\prime} \cdot \mathrm{R}}{\mathrm{I}}=\frac{\mu_{\mathrm{b}} \cdot\left[\frac{\left(1+\mathrm{e}_{\mathrm{b}}\right)}{2} \cdot \mathrm{~m} \cdot \mathrm{v}\right] \cdot \mathrm{R}}{\frac{2}{5} \cdot \mathrm{~m} \cdot \mathrm{R}^{2}}=\frac{5}{4 \cdot \mathrm{R}} \cdot \mu_{\mathrm{b}} \cdot\left(1+\mathrm{e}_{\mathrm{b}}\right) \cdot \mathrm{v}
$$

where:

$$
\begin{array}{ll}
\mu_{\mathrm{b}}:=0.06 & \text { typical COF between the balls } \\
\mathrm{e}_{\mathrm{b}}:=0.94 & \text { typical COR between the balls }
\end{array}
$$

CB hop height and time:

Energy is conserved during the CB hop of height h , so:

$$
\begin{gathered}
\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h}=\frac{1}{2} \cdot{\mathrm{~m} \cdot \mathrm{v}_{\mathrm{z}}}_{2}^{\mathrm{h}(\mathrm{v}):=\frac{\mu_{\mathrm{b}}^{2} \cdot\left(1+\mathrm{e}_{\mathrm{b}}\right)^{2}}{8 \mathrm{~g}} \cdot \mathrm{v}^{2}} \\
\mathrm{~h}\left(\mathrm{v}_{\text {medium }}\right)=0.067 \cdot \text { in } \quad \mathrm{h}\left(\mathrm{v}_{\text {fast }}\right)=0.196 \cdot \text { in } \quad \mathrm{h}\left(\mathrm{v}_{\text {power }}\right)=0.544 \cdot \text { in }
\end{gathered}
$$

The time required for the entire hop (up and down) is given by:

$$
\begin{array}{cc}
\mathrm{v}_{\mathrm{Z}}=2 \mathrm{~g} \cdot \Delta \mathrm{t} & \Delta \mathrm{t}(\mathrm{v}):=\frac{\mu_{\mathrm{b}} \cdot\left(1+\mathrm{e}_{\mathrm{b}}\right) \cdot \mathrm{v}}{\mathrm{~g}} \\
\Delta \mathrm{t}\left(\mathrm{v}_{\text {fast }}\right)=0.064 \mathrm{~s} & \Delta \mathrm{t}\left(\mathrm{v}_{\text {power }}\right)=0.106 \mathrm{~s}
\end{array}
$$

Ball travel distances after impact:

$$
\begin{array}{ll}
\mu_{\mathrm{s}}:=0.2 & \text { typical ball-cloth coefficient of sliding friction } \\
\mu_{\mathrm{r}}:=0.01 & \text { typical ball-cloth coefficient of rolling resistance } \\
\underbrace{\mathrm{R}}_{\mathrm{N}}:=2.25 \cdot \mathrm{in} & \text { ball radius }
\end{array}
$$

From TP 4.1, the skid distance and final speed are given by:

$$
\begin{gathered}
\mathrm{d}_{\text {skid }}(\mathrm{v}, \omega):=\operatorname{sign}\left(\frac{\mathrm{v}}{\mathrm{R}}-\omega\right) \cdot \frac{2}{49 \cdot \mu_{\mathrm{s}} \cdot g} \cdot\left[6 \cdot \mathrm{v}^{2}-5 \mathrm{v} \cdot \mathrm{R} \cdot \omega-(\mathrm{R} \cdot \omega)^{2}\right] \\
\mathrm{v}_{\text {skid }}(\mathrm{v}, \omega):=\frac{5}{7} \cdot \mathrm{v}+\frac{2}{7} \cdot \mathrm{R} \cdot \omega
\end{gathered}
$$

The distance required for rolling to stop is:

$$
\mathrm{d}_{\text {roll_stop }}(\mathrm{v}):=\frac{\mathrm{v}^{2}}{2 \cdot \mu_{\mathrm{r}} \cdot \mathrm{~g}}
$$

After impact, the initial CB and OB speeds and spins are (from TP A. 5 and above):

$$
\begin{aligned}
\mathrm{v}_{\mathrm{CB}}(\mathrm{v}):=\frac{\left(1-\mathrm{e}_{\mathrm{b}}\right)}{2} \cdot \mathrm{v} & \mathrm{v}_{\mathrm{OB}}(\mathrm{v}):=\frac{\left(1+\mathrm{e}_{\mathrm{b}}\right)}{2} \cdot \mathrm{v}^{2} \\
\Delta \omega(\mathrm{v}):=\frac{5}{4 \cdot \mathrm{R}} \cdot \mu_{\mathrm{b}} \cdot\left(1+\mathrm{e}_{\mathrm{b}}\right) \cdot \mathrm{v} & \omega_{\mathrm{CB}}(\mathrm{v}):=\frac{\mathrm{v}}{\mathrm{R}}-\Delta \omega(\mathrm{v}) \quad \omega_{\mathrm{OB}}(\mathrm{v}):=-\Delta \omega(\mathrm{v})
\end{aligned}
$$

Here, we will ignore ball hop effects (i.e., the skid is assumed to take place smoothly, without hop interruption).

Therefore, the distances the CB and OB travel after a rolling direct hit are:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{CB}}(\mathrm{v}):=\mathrm{d}_{\text {skid }}\left(\mathrm{v}_{\mathrm{CB}}(\mathrm{v}), \omega_{\mathrm{CB}}(\mathrm{v})\right)+\mathrm{d}_{\text {roll_stop }}\left(\mathrm{v}_{\text {skid }}\left(\mathrm{v}_{\mathrm{CB}}(\mathrm{v}), \omega_{\mathrm{CB}}(\mathrm{v})\right)\right) \\
& \mathrm{d}_{\mathrm{OB}}(\mathrm{v}):=\mathrm{d}_{\text {skid }}\left(\mathrm{v}_{\mathrm{OB}}(\mathrm{v}), \omega_{\mathrm{OB}}(\mathrm{v})\right)+\mathrm{d}_{\text {roll_stop }}\left(\mathrm{v}_{\text {skid }}\left(\mathrm{v}_{\mathrm{OB}}(\mathrm{v}), \omega_{\mathrm{OB}}(\mathrm{v})\right)\right) \\
& \frac{\mathrm{d}_{\mathrm{OB}}\left(\mathrm{v}_{\text {slow }}\right)}{\mathrm{d}_{\mathrm{CB}}\left(\mathrm{v}_{\text {slow }}\right)}=6.08 \quad \frac{\mathrm{~d}_{\mathrm{OB}}\left(\mathrm{v}_{\text {medium }}\right)}{\mathrm{d}_{\mathrm{CB}}\left(\mathrm{v}_{\text {medium }}\right)}=6.08
\end{aligned}
$$

These numbers are similar to the results from the analyses in TP A.16.

