TP B. 6

CB table lengths of travel for different speeds, accounting for rail rebound and drag losses

supporting:

"The Illustrated Principles of Pool and Billiards"
http://billiards.colostate.edu by David G. Alciatore, PhD, PE ("Dr. Dave")
originally posted: 1/30/2009 last revision: 12/3/2023

Typical speeds for a range of shots:

$$
\begin{gathered}
\mathrm{v}_{\text {touch }}:=1.5 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {slow }}:=3 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {medium_soft }}:=5 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {medium }}:=7 \cdot \mathrm{mph} \\
\mathrm{v}_{\text {medium_fast }}:=8 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {fast }}:=12 \cdot \mathrm{mph} \quad \mathrm{v}_{\text {power }}:=20 \cdot \mathrm{mph}
\end{gathered}
$$

Relevant physical properties:

$$
\begin{array}{ll}
\mu_{\mathrm{s}}:=0.2 & \text { typical ball-cloth coefficient of sliding friction } \\
\mu_{\mathrm{r}}:=0.01 & \text { typical ball-cloth coefficient of rolling resistance }
\end{array}
$$

From TP 4.1, the distance required for a rolling ball to stop is:

$$
\mathrm{d}_{\text {roll_stop }}(\mathrm{v}):=\frac{\mathrm{v}^{2}}{2 \cdot \mu_{\mathrm{r}} \cdot \mathrm{~g}}
$$

Table lengths vs. speed, accounting for rail rebound and drag losses:

$$
\begin{array}{ll}
\mathrm{e}_{\mathrm{c}}:=0.7 & \text { typical ball/rail COR with ball rolling into the rail cushion } \\
& \text { (see HSV B.15) }
\end{array}
$$

When the CB rebounds off a rail cushion, speed is lost. If we assume the CB rebounds off the rail with stun (see HSV B. 15 - a rolling ball usually rebounds with stun), the resulting skid distance and speed change are (from TP 4.1):

$$
\begin{aligned}
& \mathrm{d}_{\text {skid }}(\mathrm{v}):=\frac{12 \cdot \mathrm{v}^{2}}{49 \cdot \mu_{\mathrm{s}} \cdot \mathrm{~g}} \\
& \mathrm{v}_{\text {skid }}(\mathrm{v}, \mathrm{x}):=\sqrt{\mathrm{v}^{2}-2 \cdot \mu_{\mathrm{s}} \cdot \mathrm{~g} \cdot \mathrm{x}} \quad \quad \mathrm{v}_{\text {skid }}\left(\mathrm{v}, \mathrm{~d}_{\text {skid }}(\mathrm{v})\right)=\frac{5}{7} \cdot \mathrm{v}
\end{aligned}
$$

In the analysis below, to keep things reasonably simple, we assume the CB always rebounds off the rail with stun. HSV B. 15 shows that a skidding ball usually rebounds with some roll, but the overall rebound efficiency, taking post-rebound skid into consideration, is fairly consistent for most shots.

While the CB rolls, it slowly loses speed due to rolling resistance over distance x :

$$
\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{v}^{\prime^{2}}=\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{v}^{2}-\mu_{\mathrm{r}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \mathrm{x}
$$

so the function of speed over distance, during rolling, is:

$$
\mathrm{v}_{\mathrm{roll}}(\mathrm{v}, \mathrm{x}):=\sqrt{\mathrm{v}^{2}-2 \cdot \mu_{\mathrm{r}} \cdot \mathrm{~g} \cdot \mathrm{x}}
$$

Determine CB travel distance for a rolling CB with rail collisions:

$$
\mathrm{TL}:=100 \cdot \text { in } \quad \mathrm{TL}=8.333 \cdot \mathrm{ft} \quad 9 \text { table playing length }
$$

$$
\begin{aligned}
& \mathrm{d}(\mathrm{v}):=\left\lvert\, \begin{array}{l}
\mathrm{x} \leftarrow 0 \\
\mathrm{v} \leftarrow \mathrm{v} \\
\mathrm{n} \leftarrow 0 \\
\mathrm{roll} \leftarrow 1 \\
\text { if }\left(\mathrm{d}_{\text {roll_stop }}(\mathrm{v})<\mathrm{TL}\right) \\
\left\lvert\, \begin{array}{l}
\text { "less than one table length" } \\
\mathrm{x} \leftarrow \mathrm{~d}_{\text {roll_stop }}(\mathrm{v})
\end{array}\right.
\end{array}\right. \\
& \text { otherwise } \\
& \text { "ball will roll into a rail" } \\
& \text { while }(\mathrm{v}>0) \\
& \text { if (roll = 1) } \\
& \text { if } \mathrm{d}_{\text {roll_stop }}(\mathrm{v})<(\mathrm{n}+1) \mathrm{TL}-\mathrm{x} \\
& \text { "won't make it to rail again" } \\
& \mathrm{x} \leftarrow \mathrm{x}+\mathrm{d}_{\text {roll_stop }}{ }^{(\mathrm{v})} \\
& \text { break } \\
& \text { otherwise } \\
& \begin{array}{l}
\text { "roll to the rail" } \\
\mathrm{n} \leftarrow \mathrm{n}+1 \\
\mathrm{v} \leftarrow \mathrm{v}_{\text {roll }}(\mathrm{v}, \mathrm{n} \cdot \mathrm{TL}-\mathrm{x}) \\
\mathrm{x} \leftarrow \mathrm{n} \cdot \mathrm{TL} \\
\text { "rebound off the rail" } \\
\mathrm{v} \leftarrow \mathrm{e}_{\mathrm{c}} \cdot \mathrm{v} \\
\mathrm{roll} \leftarrow 0
\end{array}
\end{aligned}
$$

$\mathrm{d}\left(\mathrm{v}_{\text {touch }}\right)=7.522 \cdot \mathrm{ft} \quad \mathrm{d}\left(\mathrm{v}_{\text {slow }}\right)=14.033 \cdot \mathrm{ft} \quad \mathrm{d}\left(\mathrm{v}_{\text {medium }}\right)=25.041 \cdot \mathrm{ft}$

$$
\mathrm{d}\left(\mathrm{v}_{\text {fast }}\right)=30.752 \cdot \mathrm{ft} \quad \mathrm{~d}\left(\mathrm{v}_{\text {power }}\right)=39.291 \cdot \mathrm{ft}
$$

table lengths of travel:

$$
\begin{aligned}
& \frac{\mathrm{d}\left(\mathrm{v}_{\text {touch }}\right)}{\mathrm{TL}}=0.903 \quad \frac{\mathrm{~d}\left(\mathrm{v}_{\text {slow }}\right)}{\mathrm{TL}}=1.684 \quad \frac{\mathrm{~d}\left(\mathrm{v}_{\text {medium }}\right)}{\mathrm{TL}}=3.005 \\
& \frac{\mathrm{~d}\left(\mathrm{v}_{\text {fast }}\right)}{\mathrm{TL}}=3.69 \quad \frac{\mathrm{~d}\left(\mathrm{v}_{\text {power }}\right)}{\mathrm{TL}}=4.715 \\
& \text { rolling lag shot: } \quad \mathrm{v}:=\mathrm{v}_{\text {slow }}=3 \cdot \mathrm{mph} \quad \text { (estimate) } \\
& \text { Given } \\
& d(v)=2 \cdot T L \\
& \mathrm{v}_{\text {lag }}:=\operatorname{Find}(\mathrm{v}) \\
& v_{\text {lag }}=3.465 \cdot \mathrm{mph} \quad \frac{\mathrm{~d}\left(\mathrm{v}_{\text {lag }}\right)}{\mathrm{TL}}=2
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\mathrm{m}}{\mathrm{M}}:=0 \cdot \mathrm{mph}, 0.5 \cdot \mathrm{mph} . . \mathrm{v}_{\text {power }} \quad \quad \mathrm{v}_{\text {power }}=20 \cdot \mathrm{mph} \\
& \frac{v_{\text {fast }}}{v_{\text {fedium }}}=1.714 \\
& \mathrm{v}_{\text {medium }} \\
& v_{\text {fast }}=4 \\
& \mathrm{v}_{\text {slow }} \\
& \frac{d\left(v_{\text {fast }}\right)}{d\left(v_{\text {slow }}\right)}=2.191 \\
& \frac{\mathrm{v}_{\text {power }}}{}=13.333 \\
& v_{\text {touch }} \\
& \frac{d\left(v_{\text {fast }}\right)}{d\left(v_{\text {medium }}\right)}=1.228 \\
& \frac{d\left(v_{\text {fast }}\right)}{d\left(v_{\text {slow }}\right)}=2.191 \\
& \frac{d\left(v_{\text {power }}\right)}{d\left(v_{\text {touch }}\right)}=5.224
\end{aligned}
$$

So the speed must be increased by a much larger percentage to create a given percentage of distance increase, and this effect is even stronger at faster speeds and longer distances. In other words, it takes a lot more speed to create more distance, especially at higher speeds and longer distances.

