What effects do different ball cleaners and polishers have on the reaction of the balls?

The following video shows the results of an experiment showing how different surface treatments affect throw and cling/skid/kick:

For more information, see “Throw Follow-up: Part I: Cling” (BD, July, 2014) and “Throw Follow-up: Part II: More Results” (BD, August, 2014).

Chalk brand can also have an effect on cling/skid/kick. For more info, see the chalk comparison resource page.

See also: Silicone spray effects.

Why shouldn’t we treat pool balls with whichever wax reduces throw as much as possible?

If there were no throw, shot making would be easier because you could aim every shot, regardless of angle, speed, and spin, to hit at the ideal ghost-ball position along the “line of centers.” However, throw shots and spin-transfer shots would no longer be possible. Also, as the wax wears off with use, the conditions could change significantly. Also, if everybody didn’t use the same wax and clean balls frequently, conditions could be very different from one place to another, from one day to the next, and from one ball to the next.

What ball cleaning product is generally recommended?

Aramith Ball Cleaner is generally recommended.

Why does the amount of throw increase more for the 45° cut as compared to the 30° cut, where throw is usually maximum?

Maximum cut-induced throw (CIT) under typical conditions occurs close to a 1/2-ball hit, or a 30° cut angle (see maximum throw). At a slow 1/2-ball hit, under typical conditions, the cue ball (CB) is sliding on the object ball (OB) during the entire contact period until near ball separation, where the CB and OB just begin to “gear” together with no more sliding. This allows the CB to create the largest amount of throw possible for that angle. With a 45° cut, under typical conditions, the CB is sliding on the OB during the entire contact period so the balls don’t gear together during collision. However, with cling, the amount of friction is larger and the CB is able to “gear” with the OB during contact for cut angles larger than 30°, producing more throw. The extra friction doesn’t increase throw at small cut angles because the balls are already “gearing” together under typical conditions, already producing the most throw possible. Once the balls gear together, no more throw is possible. With larger cut angles, an increase in friction increases the amount of spin transfer (leading to possible gearing) and throw. If gearing is already occurring, increasing friction further has no additional effect.

For more information, see the plots on the last two pages (pp. 16-17) in TP A.14 – The effects of cut angle, speed, and spin on object ball throw.


from Dan White (in AZB post):

I have been using Novus 1 for cleaning balls in my ball machine for the last couple of years, based on recommendations I saw in AZB. I came across Dr. Dave’s video on throw with various ball cleaners, and it got me to wondering how Novus 1 matched up (Dave didn’t test Novus 1). The other cleaner I have is the cream from Aramith, which you would assume is the best thing to use since they make the balls. I never liked using Aramith because it is thick and flaky and seems like it would gum up a ball machine quickly. Also, it is a mess to apply. Novus, on the other hand, can be diluted and easily sprayed on the balls in the machine. After doing this experiment, I am a little up in the air as to what the “right” cleaner is. It would seem that consistency is important, which in my experiment favors Aramith. What cleaners are used in tournaments? Is there a standard? What is used in the 14.1 events, where slipperiness can have a great impact on how well balls open?

PURPOSE OF MY EXPERIMENT

Originally, I just wanted to see where Novus fit in compared to Dave’s results. However, I began to see something odd, so I decided to take Dave’s experiment one step further. For each ball in my experiment, I shot it over and over to see if the amount of throw changed over time. Typically I shot each ball at least 20 times. I did find some interesting changes (summarized below).

First, take a look at Dave’s video to see the experimental set up.

SUMMARY OF RESULTS

For those of you who want the short version, here are my results. Note that I hit the balls a little harder than Dave did so that makes sense that I got slightly less throw with Aramith than Dave did:

1. When I cleaned the balls with Aramith (and buffed them in the ball machine) I found that throw started out at 2 inches, and within 8 to 10 trials, the throw increased to 4 inches, and remained there.

2. When I cleaned the balls with Novus 1 (and buffed them in the ball machine) I found that throw started out at just under 2 inches and took about 20 trials to reach 4 inches of throw. I also found that the amount of throw was inconsistent, as in the throw would go up to 3 or 4 inches, and then come back down to 2.5 inches for several trials, and then go back up to 4 inches.

3. I noted that since my ball cleaner has been using Novus 1 cleaner for a long time, the padding may be impregnated with residual Novus, which could impact the results of the Aramith test (item 1 above). So I cleaned more balls by hand with Aramith and only buffed them until shiny with a cotton cloth. I did not put them in the ball machine. In this case, the throw was consistent at 5 inches the entire time (over 20 tries).

CONCLUSIONS/RECOMMENDATIONS

There is a clear difference in throw between using Aramith cleaned by hand and Novus 1 cleaned in a ball machine. The Aramith throws very consistently at 5 inches, even from the very first shot, whereas the Novus 1 throws inconsistently, and changes dramatically after fewer than 10 rolls up and down the table (10 trials). Novus “tops out” at a throw around 4 inches, but is still inconsistent well after 20 tries.

It seems to me that Aramith is the way to go since it provides consistency. I find that when using Novus 1, the balls open up more easily than when using Aramith. I wonder whether this is an “unfair” advantage, akin to spraying silicone on the balls. I would be interested to hear what is being used in tournament play. I believe it is wise to learn how to play under various playing conditions, but knowing how the balls were cleaned can help a player gauge how much the throw conditions are likely to change.

Close Menu